

Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

Gonzalez, J.A., Hossain, M.S., Martinez, R., Rodriguez, G., Shuvo, M.A.I., Gaytan, S. ^{1,3}, Wicker, R., ^{1,3} Choudhuri, A., ¹ Lin, Y. ^{1,†}

¹ Department of Mechanical Engineering, The University of Texas at El Paso ² Department of Metallurgy and Materials Engineering, The University of Texas at El Paso

³ W.M. Keck Center for 3D Innovation, The University of Texas at El Paso

High-Temperature Wiring:

Wiring Material

Platinum

Titanium

Copper

Melting Point

1768.3 °C

1668 °C

1084.62 °C

Results of temperature distribution (left) and von misses stress (middle)

54%

60%

Electrical Resistivity (at 20 °C) Elongation at Break

Table 1: The chosen wiring elements, Platinum and Titanium properties, are compared to Copper.

105 nΩ·m

420 nΩ·m

16.78 nΩ·m

- Perform mechanical testing.
- Evaluate the bonding strength of alumina paste as bonding agent.
- Assessment of sensing parameters before and after fabrication.

	Year 1				Year 2				Year 3			
	Q1	Q2	Q3	Q 4	Q 1	Q2	Q3	Q 4	Q1	Q2	Q3	Q 4
Objective 1												
Task 1: Fabrication Characterization												
Task 2: "Smart Parts" Fabrication												
Objective 2												
Task 3: Mechanical Evaluation												
Task 4: Sensing Demonstration												
Objective 3												
Task 5: "Smart Tube" Testing												
Task 6: "Smart Premixer" Testing												
Task 7: Modification to Fabrication												
Progress Report												
Final Report												

Student Involvement

Acknowledgements

- The authors acknowledge the financial support for this work by the DOE - National Energy Technology Laboratory. Award Number: DE-FE0012321.
- Gaytan, S.M., et al., Advanced metal power based manufacturing of complex components by electron beam melting. Materials Technogy: Advanced Performance Materials, 2009. 24(3): p.180-190.
- Li, X., et al., Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Materials Letters. 2009. 63(3-4): p. 403-405