

Award No. DE-FEOO08719

Synergistic Computational and Microstructural Design of Next-Generation High-Temperature Austenitic Stainless Steels

Ibrahim Karaman and Raymundo Arroyave

Program Manager: Dr. Patricia Rawls

Students: T. Jozaghi, C. Wang, R. Villarreal, S. Wang

Department of Material Science and Engineering Texas A&M University

Project Goal(s)

- Design new austenitic stainless steels (ASS) for advanced ultra supercritical combustion coal-fired power systems
 - ✓ High temperature strength
 - ✓ High ductility
 - ✓ Good creep resistance
 - ✓ Good high temperature oxidation/corrosion resistance
- Design of micro-alloying additions, heat treatment schedules, and microstructure
 - Cost-effective alternatives to Ni-base superalloys
 - Higher-temperature alternatives to ferritic steels
- Develop a robust ICME design/optimization framework for high temperature ASS.

Alloy + Microstructure Design

- <u>Austenitic structure</u>
- High density of low energy grain boundaries or nano-twin boundaries
- Nano-scale precipitates, intermetallics, laves phases stable at high temperature
- Formation of alumina surface oxide

Strategy—Computer-Aided Alloy Design

- Optimization of micro-alloying additions for desired microstructure and given performance criteria:
 - Single bulk phase, i.e. austenite
 - Control SFE and enhanced twinning ability
 - Alumina formation
 - □ Dissolvable carbides/carbonitrides (welding issue?)
 - □ <u>MC instead of M₂₃C₆</u>
 - □ High temperature intermetallics and laves phases
 - Very fine particles (control MC size with Nb, Ti, Zr, V, etc., nucleation at dislocations and twin boundaries)

Prediction of alumina-scale forming ability

- Prediction of twinning ability
- □ Transformation kinetics of precipitate phases

In This Talk:

- Experimental determination of stability of deformation twinning nanostructures
- Stacking Fault Energy Models and Data Analysis
- Thermodynamic/Kinetic Criteria for Alumina Formation
- GA-based Alloy Design

Strategy--Microstructure Design

Twinning induced Grain Boundary Engineering (GBE)

References

Lin, P., G. Palumbo, U. Erb, and K. Aust, Scripta Materialia, 1995. 33(9): p. 1387-1392. Kurihara, K., H. Kokawa, S. Sato, Y. Sato, H. Fujii, and M. Kawai, Journal of Materials Science, 2011: p. 1-6.

Strategy--Microstructure Design

o Simple thermo-mechanical processing

316 Stainless Steel deformed

6

Questions and Challenges

 Fundamental study of recovery and recrystallization (ReX) of deformation twins in low SFE steels in the presence of various densities of dislocations.

 \circ In polycrystal of 316 SS

- Role of in-situ carbides and nitrides of Ta, V, W, Cr during recovery and ReX in the presence of deformation twins? What is the optimum thermo-mechanical processing path?
- Control of particle size and distribution with micro-alloying control
- Multi-objective alloy optimization using genetic algorithms
- The role of deformation twins, laves phases, nano carbides, and intermetallic particles on creep and stress rupture behavior of designed steels.

all in wt%	Fe	Ni	Cr	Mn	Nb	Si	AI	Ti	Мо	v	С	N	В
Alloy 1	Ba.	20	14	2	0.86	0.15	2.5	0	2.5	0	0.08	0	0.01
Alloy 2	Ba.	12	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 3	Ba.	17	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0

Study: deformation-twin thermal stability and their effect on recrystallization and grain boundary character distribution

Alloy 1 X

Steel	×	Evolution of second phase at high temperatures
316N	~	Fully austenite
SS	×	No twinning
	~	Fully austenite
316 SS	✓	Twinning

No alumina scale formation ×

Fully austenite \checkmark

Alloys selected based on literature

- Uncontrollable NbC precipitation X
 - No Twinning (by our own exp.)
- ✓ Alumina scale formation

	×	Second phase formation
Alloy 2	×	Uncontrollable Ti-rich NbC precipitation
	\checkmark	Austenite with intra-granular

- second phase Alloy 3 Uncontrollable Ti-Nb carbo-×
 - nitrides and AIN precipitation

Hadfield

✤ Materials studied so far

Highly twinned {001}/{111} texture

Twinning in Polycrystals

	20%	30%	40%
Grains with twins (%)	62.6±4.6	77.3±3.1	79.5±4.3

✤ Twin Thermal Stability During In-situ TEM Heating

316 Stainless Steel, Strained 20%

11

Twinnability: Summary & Future Work

- 1. The twin density increases with the increasing amount of strain.
- 2. The twin width is still at nano-scale despite different strain levels.
- From in-situ and in-furnace heat treatments: deformation twins are stable up to 900°C, under zero stress, for one hour.
- Observed thermal stability of these nano-twins constitutes a promising strategy for strengthening stainless steels at elevated temperatures.

- Create deformation twins, anneal away the dislocations, deform again to increase twin density.
- Study mechanical behavior and creep response of twin-strengthened steel, under load and higher temperatures.

In This Talk:

- Experimental determination of stability of deformation twinning nano-structures
- Stacking Fault Energy Models and Data Analysis
- Thermodynamic/Kinetic Criteria for Alumina Formation
- GA-based Alloy Design

Materials studied so far

Hadfield	✓ Highly twinned {001}/{111} texture
Steel	 Evolution of second phase at high temperatures
316N	✓ Fully austenite
SS	 No twinning
	✓ Fully austenite
316 SS	 ✓ Twinning
	 No alumina scale formation
-	

Study: deformation-twin thermal stability and their effect on recrystallization and grain boundary character distribution

Alloys	Alloys selected based on literature								
	✓ Fully austenite								
Allow 1	 Uncontrollable NbC precipitation 								
Alloy I	 No Twinning (by our own exp.) 								
	✓ Alumina scale formation								
	 Second phase formation 								
Alloy 2	 Uncontrollable Ti-rich NbC precipitation 								
	 ✓ Austenite with intra-granular second phase 								
Alloy 3	 Uncontrollable Ti-Nb carbo- nitrides and AIN precipitation 								

all in wt%	Fe	Ni	Cr	Mn	Nb	Si	AI	Ti	Мо	V	С	Ν	В
Alloy 1	Ba.	20	14	2	0.86	0.15	2.5	0	2.5	0	0.08	0	0.01
Alloy 2	Ba.	12	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 3	Ba.	17	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0

Prediction of Stacking Fault Energy as a Function of Alloying Additions

Models:

Experimental Measurements

- (A. Dumay 2006)
- (Schramm 1975)
- (Xing Tian 2008)
- Many more

Theoretical Predictions

- (Cohen 1976)
- (Mullner 1998)
- (Jacques 2010)
- (Vitos 2011)
- (Q. Lu 2013)
- (K. Ishida 1976)
- Many more

Relevant to creep, strain deformation, annealing twins, formation of dislocations, stress corrosion cracking, phase transformation stability, and electron/vacancy density, but we want to optimize SFE to ensure formation of deformation twins

Challenges in Measuring/Predicting SFE

Method	Uses	a
ТЕМ	Traditional direct measure of SFE through node radii.	g [20-2] g [20-2] b _T 1/2[10-1]
Weak beam	Direct measure between dissociated partials	
XRD	SFE from peak position and peak broadening	7.57 m
HREM	Uses both transmission and scatter interference for high atomic resolution	100 nm 20 nm
Ab-initio	DFT calculations	c interstitial effects. Verification from experiment needed
Thermodynamics	Many models:	Thermodynamic parameter guess work. System specific
EAM	For pure metals or binary	Limited applicability

Prediction of SFE-ANNI Model

Axial Next Nearest Neighbor Interaction (ANNI) Model:

$$E = E_0 - J_1 \sum_{i} S_i S_{i+1} - J_2 \sum_{i} S_i S_{i+2} - J_3 \sum_{i} S_i S_{i+3}$$

ABCBABC $F_{SF} - F_0 = -4J_1 - O(J_2) \approx F_{HCP} - F_{FCC}$

Method: EMTO-CPA

	μ^{FCC}	μ^{HCP}	Ϋ́ο	$\gamma_{M,RT}$	γ
Fe74.5Cr13.5Ni12	1.61	0.00	7.03	30.71	37.75
[14]	1.62	0.00	8.50	36.20	44.60
Fe70.5Cr17.5Ni12	1.54	0.00	6.67	29.84	36.51
[14]	1.54	0.00	-1.10	29.70	28.60
Fe65_5Cr17.5Ni12Mn5	1.32	0.00	7.19	26.97	34.15

Magnetic Entropic Contributions are Essential

Prediction of SFE – *Ab Initio* Lattice Deformations

[Jahnatek et al PRB 2009]

Pure Fe

Stacking Fault Energy -Challenges

Incorporation of SFE into alloy design is essential

- Many attempts from literature to formulate temperature and alloying effect on SFE, from experiment and from theory, <u>have had limited</u> success
 - "Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions" (Saeed-Akbari, 2013)
 - high error of uncertainty- values reported in the 1960's and early 1970s are, in general 20-30% overestimated (Campos, 2008)
 - "In summary, there is no agreement on accuracy of SFE values obtained, and perhaps no better than about 20 pct" (Siems et al)
 - Theoretical big discrepancy with carbon effect (either no effect or huge effect)- relaxation time for carbon diffusion, and how carbon interacts with the SF
 - "The dependence of the SFE on...carbon...is not yet fully understood, and different tendencies have been found by different authors" (Mujica 2012)

Data Mining Approach (SFE)

Data Mining Approach (SFE)

Experimental

SFE	Ni	Cr	Mn	Nb	Si	AI *	Мо	С
	10-16%	13-18%	0-4%	0-0.5%	0-2%	0.2-6%	0-3%	0-0.08%
Increase	2.8	0.39 0.49	0.75	?		2	2.2	
Decrease		?		?	-2.0			-0.47 -2.1 -5.7

Examples - SFE trends based on preliminary literature Experimental/Theoretical data

Theoretical

SFE	Ni	Cr	Mn	Nb	Si	AI	Мо	С
Increase	×			√	?	?	?	?
Decrease		×	×		?	?	?	?

$SFE = -4.0 + 2.8 \times Ni(pct) + 0.39 \times Cr(pct) + 2.2$

- \times Mo(pct) 2.0 \times Si(pct) + 0.75 \times Mn(pct)
- $-0.47 \times C(pct) 12 \times N(pct).$

(Yonezawa 2013)

Data Mining Approach to SFE

Current (empirical) model used:

$$\begin{split} \mathrm{SFE} &= -4.0 + 2.8 \times \mathrm{Ni}(\mathrm{pct}) + 0.39 \times \mathrm{Cr}(\mathrm{pct}) + 2.2 \\ &\times \mathrm{Mo}(\mathrm{pct}) - 2.0 \times \mathrm{Si}(\mathrm{pct}) + 0.75 \times \mathrm{Mn}(\mathrm{pct}) \\ &- 0.47 \times \mathrm{C}(\mathrm{pct}) - 12 \times \mathrm{N}(\mathrm{pct}). \end{split}$$

(Yonezawa 2013)

Ensure twin effects through control of stacking fault energy

- Alloy design hinges on a proper treatment and interpretation of experimental and theoretical data
- Data mining is great "scaffolding" for future alloy design iterations.

In This Talk:

- Experimental determination of stability of deformation twinning nano-structures
- Stacking Fault Energy Models and Data Analysis
- Thermodynamic/Kinetic Criteria for Alumina Formation
- GA-based Alloy Design

••••	Materials	studied	so f	a 1

Hadfield	✓ Highly twinned {001}/{111} texture
Steel	 Evolution of second phase at high temperatures
316N	✓ Fully austenite
SS	× No twinning
	✓ Fully austenite
316 SS	✓ Twinning
	 No alumina scale formation
	$\overline{\nabla}$

Study: deformation-twin thermal stability and their effect on recrystallization and grain boundary character distribution

Alloys selected based on literature								
	 ✓ Fully austenite 							
Alloy 1	 Uncontrollable NbC precipitation 							
Alloy I	 No Twinning (by our own exp.) 							
	✓ Alumina scale formation							
	 Second phase formation 							
Alloy 2	 Uncontrollable Ti-rich NbC precipitation 							
	 ✓ Austenite with intra-granular second phase 							
Alloy 3	 Uncontrollable Ti-Nb carbo- nitrides and AIN precipitation 							

all in wt%	Fe	Ni	Cr	Mn	Nb	Si	AI	Ti	Мо	V	С	Ν	В
Alloy 1	Ba.	20	14	2	0.86	0.15	2.5	0	2.5	0	0.08	0	0.01
Alloy 2	Ba.	12	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 3	Ba.	17	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0

Alumina in Austenitic Steels

Higher Stability than Conventional Chromium Oxide

- Alumina is also more thermodynamically stable in oxygen than Cr₂O₃ and offers superior protection in many industrially relevant environments.
 - Increased upper temperature oxidation
 - Comparable to more expensive nickel-base alloys
 - Lower cost, formability, and weldability of conventional stainless steels.

Kubaschewisk O. Met. Thermochem. 1979 Opila EJ. Trans Tech Publ. 2004 Meier GH. Materials and Corrosion 1996

Free Energy Stability Comparison

Combined Thermodynamic and Kinetic Criteria: 'effective growth constant'

<u>Criteria</u>

For a high chance of establishing a continuous Al_2O_3 layer, the material should have

- High Absolute Effective Valence Value
- High Absolute Gibbs free energy Value
- High K Value

Δ

 $\Delta G = \Delta G^0 + RT \ln Q$

Where

$$\Delta G^{0} = 0.2193T - 1127.3137$$

$$Q = \frac{a_{Al_2O_3}^{2/y}}{[a_{Al}]^{2x/y}[P_{O_2}]}$$

$$a_{Al_2O_3}^{2/y} = Unity$$
And

$$Val_t^{eff} \equiv \sum_{n=i} (z_i - z_{al})\bar{c_i} = \Delta e'$$
So

$$G = (0.2193T - 1127.3137) + RT \ln Q$$
And

$$K \propto Val_t^{eff} \Delta G$$

A. Sato et al. Acta Materialia 59 (2011) 225-240

Testing the 'Effective Growth Constant Criterion'

Third Element Effect-Synergies between Chromia and Alumina formation

$$f_{v}^{*} = \frac{N_{Cr}^{0*}\rho(CrO_{v})}{F(h_{Cr})} + \frac{N_{Al}^{0*}\rho(AlO_{\mu})}{F(h_{Al})}$$

$$N_{0}^{SO} = G(\gamma) \left[v \frac{N_{Cr}^{0}}{F(h_{Cr})} + \mu \frac{N_{Al}^{0}}{F(h_{Al})} \right]$$

$$\cdot \left[\frac{erf(\gamma) - erf(u_{0})}{erf(\gamma)} \right]$$

$$N_{Cr}^{O*} = N_{Cr}^{eq}(1 - N_{Cr}^{eq})F\left(\frac{1}{2}[k_{c}(Cr_{2}O_{3})/D_{Cr}]\right)^{1/2}$$

$$N_{Cr}^{O*} = F\left(\frac{1}{2}[k_{c}(Al_{2}O_{3})/D_{cr}]\right)^{1/2}$$

$$N_{Al}^{O*} = F\left(\frac{1}{2}[k_{c}(Al_{2}O_{3})/D_{Al}]\right)^{1/2}$$

$$Rapp Robert Corrosion 1965$$
Niu Y, Gesmundo F. Oxid Met 2004
Crank, John Mathmatics of Diff. 1979
Niu Y, Wang S, Gesmundo F Corr Sci, 2008
$$F(r) = \pi^{1/2}rexp(r^{2})[1 - erfc(r)]$$

$$G(r) = \pi^{1/2}rexp(r^{2})erfc(r)$$

$$And$$

$$N_{cr}^{eq} < 1$$

$$G(r) = \pi^{1/2}rexp(r^{2})erfc(r)$$

$$And$$

$$N_{cr}^{eq} < 1$$

$$M_{ad}^{eq} < 1$$

$$M_{cr}^{eq} < 1$$

$$M_{cr}^{eq} = \frac{1}{2} \left[k_{c}(Cr_{2}O_{3})/D_{cr} \right]^{1/2}$$

$$And$$

$$N_{cr}^{eq} = \frac{1}{2} \left[k_{c}(Al_{2}O_{3})/D_{cr} \right]^{1/2}$$

$$And$$

$$Alby$$

$$Alby$$

$$M_{cr}^{eq} = \frac{1}{2} \left[k_{c}(Al_{2}O_{3})/D_{cr} \right]^{1/2}$$

$$Alby$$

$$M_{cr}^{eq} = \frac{1}{2} \left[k_{$$

Third Element Effect Predominance Maps

ENGI

TEXAS A&M

С

Testing Third Element Effect Predominance Maps

0.1

0.3

0.2

N^{o⁺}_{Cr}

0.4

0.5

0.1

0.2

0.3

N°[∗]_{Cr}

0.4

0.5

0.1

0.2

N°[∗]_{Cr}

0.3

0.4

0.5

In This Talk:

- Experimental determination of stability of deformation twinning nano-structures
- Stacking Fault Energy Models and Data Analysis
- Thermodynamic/Kinetic Criteria for Alumina Formation
- GA-based Alloy Design

Genetic Algorithm-based Optimization

- Computational Genetic Algorithms are a necessity to
 - Streamline Alloy Design Process
 - Decrease Time and Cost of Alloy Discovery
 - Decrease Time and Cost of Alloy Refinement
- GA will be used to find a heat treatment process for
 - Maximizing FCC Phase
 - Minimize BCC and Unwanted Phases
 - Ensure Twinnability through control of Stacking Fault Energy
 - Austenite Stability
 - Alumina Formation
 - Critical Stress for Creep

Proposed Genetic Algorithm Alloys

Future Plans

- Formulate twinnable, alumina-forming composition
 - Difficult problem: Al increases SFE, low Al reduces stability of alumina layer. <u>Must lower SFE through</u> <u>alloying</u>
- Investigate thermal stability of deformation twins
 - We know we can design alloys that exhibit significant nano-structured deformation twins.
 - Twins appear to be stable in the short term. What about long-term stability?
 - What is the effect of twin structure on ReX?

Future Plans, ctd

- Investigate effect of nano-precipitates
 - How do nano-precipitates interact with twins?
- Comprehensive Alloy Optimization:
 - Alumina, twinnability, nano-precipitates
 - Prepare alloys, characterize mechanical response, long-term behavior

Backup slides

- Austenitic structure
- High density of low energy grain boundaries or nano-twin boundaries
- Nano-scale precipitates, intermetallics, laves phases stable at high temperature

Austenitic structure

- High density of low energy grain boundaries or nano-twin boundaries
- Nano-scale precipitates, intermetallics, laves phases stable at high temperature
- Formation of alumina surface oxide

Nano-precipitates (carbides, intermetallics)

Laves phase

Deformation twinning with fine thickness

Stacking Fault Energy

✤ Measuring SFE

Transmission Electron Microscope

- Direct observation of faulted dislocation structures
 - Dislocation nodes
 - Multiple ribbons
 - Stacking fault tetrahedral
 - Faulted dipoles

X-ray Diffraction

- Research by Reed and Schramm- established relationship among stacking fault probability and microstrain
 - Stacking faults affect XRD line shift and line broadening
 - In-situ XRD: SFE determined from critical shear stress (David Rafaja, 2013)

Others:

• HREM, Texture, Creep

- Design new austenitic stainless steels (ASS) for advanced ultra supercritical combustion coal-fired power systems
 - ✓ High temperature strength
 - ✓ High ductility
 - ✓ Good creep resistance
 - ✓ Good high temperature oxidation/corrosion resistance
- Design of micro-alloying additions, heat treatment schedules, and microstructure
 - Cost-effective alternatives to Ni-base superalloys
 - Higher-temperature alternatives to ferritic steels

$$\Delta G = \Delta G^{0} + RT \ln Q$$
At equilibrium
$$\Delta G = 0, Q = K_{c}$$

$$\Delta G^{0} = -RT \ln K_{c}$$
So
$$\Delta G = -RT \ln K + RT \ln Q$$

$$\Delta G = RT \ln \frac{Q}{K_{c}}$$
Where
$$K_{c} = \exp\left(\frac{-\Delta G^{0}}{RT}\right) \quad Q = \frac{a_{Al_{2}O_{3}}}{[a_{Al}]^{2}[a_{O}]^{3}}$$
If $K_{c} > Q$ then forward reaction

C.H.P. Lupis Chemical Thermodynamics of Materials

If $K_c < Q$ then backward reaction