HVOF Thermal Spray TiC/TiB₂ Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

US DOE Project Number: DE-FE0008864
Project Officer: Richard Dunst

Principal Investigator: Kanchan Mondal Southern Illinois University Carbondale

Co-Principal Investigator: Rasit Koc Southern Illinois University Carbondale Co-Principal Investigator: Chinbay Fan Gas Technology Institute, Des Plaines

2014 NETL Crosscutting Research Review Meeting May 19-23, 2014

PROJECT TEAM

HVOF, Flame Spray Coatings

GTI project number 21397 Chinbay Fan and Ronald Stanis

Background

- Fire side corrosion
 - Due to molten Na/K/Fe trisulfates
 - Worst in the region of 600 − 750 °C
 - less than 600 trisulfates are solid
 - above 750 trisulfates vaporize
- Resistance increases with Cr content
 - 18-20 % Cr
 - Inconel 870H
 - Inconel 72
 - Inconel 671

- High Temperature, High Pressure, Supercritical water
- Mechanical Strength
 - Max Allowable Stress
 - Creep Rupture Stress
 - Fatigue Resistance
- Corrosion Resistance
 - Fireside Corrosion
 - Steamside Oxidation
- Thermal conductivity,
- Low coefficient of expansion, and
- Manufacturing process issues such as weldability and fabricability.

Objectives and Tasks

Major Project Objectives

- •Synthesis of nanoparticles of TiC by a patented process.
- •Extension of the process to synthesize nanosized TiB₂ powder.
- •Optimization for HVOF spray coating of the TiC and TiB₂ on select ferritic, austenitic and nickel alloy samples generally used for water wall tubing, high temperature boiler sections, turbine blades and USC tubing applications.
- •Laboratory evaluation of the corrosion resistance of the coatings employing simulated flue gas and simulated ash.
- •Selection of optimum alloy protection system in different temperature/chemical regimes
- •Field evaluation of fabricated probes of select coating in actual boiler/turbine environment

Task I: Project Management and Planning.

Task II: TiC and TiB, powder synthesis

Task III: Sample Acquisition

Task IV: HVOF Spray Coating

Task V: Corrosion Studies

Task VI: Post Exposure Characterization

Substrates of Interest

	Substrate Material	Class	Applicable Component
1	Super 304H	Austenitic	SH/RH tubes
2	347HFG	Austenitic	SH/RH tubes
3	Sarnico 25	Austenitic	SH/RH tubes
4	HR3C	Austenitic	SH/RH tubes
5	STD617/CCA 617	Nickel Alloy	Tubing, HP turbine-casing, piping, rotor - 700 °C
6	Haynes 230	Nickel Alloy	SH tubes, HP turbine rotor – 700°C
7	Inconel 740	Nickel Alloy	SH tubes, HP turbine - casing, piping, rotor-760 °C
8	Haynes 263	Nickel Alloy	HP turbine casing – 700 °C
9	P91/P92	Ferritic	Low Temp SH/RH
10	T91/T92	Ferritic	Low Temp SH/RH, HP turbine piping – 620°C
11	Save 12	Ferritic	HP turbine casing, rotor, blades – 620 °C
12	T23/T24	Ferritic	Furnace Tubes

Powder Physical Properties

- High temperature strength retention
- Excellent oxidation resistance
- Low thermal expansion coefficient
- High wear resistance
- High melting point
- Light weight

	Melting Temp	Density	Hardness	Young's
	°C	g/cm ³	GPa	GPa
TiC	3070	4.65	28	456
TiB ₂	2900	4.5	34	570
B ₄ C	2500	2.52	38	450

Research Approach

Carbothermal Process for TiC and TiB₂ Powder Synthesis

Different temperatures and reaction time were run to get fine particle size and distribution

(a) 1300°C, 1h,

(b) 1400°C, 1h,

(c) 1500°C, 1h,

(d) 1500°C, 2h

(e) TiB₂ 1500°C, 2h

TiC

Effect of Synthesis Condition on TiC Size Distribution

SIU Southern Illinois University

HVOF THERMAL SPRAY COATING

Impingement Spreading Solidification

GTI Flame Spray System

Fuel Flexible: Acetylene, H₂,Kerosene...

Oxidant Flexible: Air or O₂

SS 304H As received

After surface roughening

Water honing

Safety is first priority

Hearing protection

Eye protection (light)

Face Shield

Flame arrestors

Two person operation

One holding gun

One operating gas flows

Emergency Stop Button

Spray Deposition

Just Flame

Flame with Powder

Partially Covered Samples

SS 304H C(0.04-0.1) Si(0.75) Mn (2) P (0.045) S (0.03) **Cr (18-20) Ni (8-10.5)**

SS 430 C(0-0.12) Si (0-1) Mn (0-1) Cr(16-18) Ni(0)

HVOF Coating of 304 H

Corrosion Setup

Air Oxidation of 304 H - 750 °C

Air Oxidation of TiC Coated 304H at 750°C

0 Hours

800 Hours

Impact of Air Oxidation at 750°C

Impact of Air Oxidation at 750°C

Impact of Salt Corrosion - 750°C

Coated

 $Na_2SO_4:NaCl:K_2SO_4:KCl = 1:1:1:1$

Impact of Salt Corrosion - 750°C

Impact of Salt Corrosion - 750°C

Impact of HVOF Conditions

Simulated Flyash Corrosion - 750 °C

	Spray Conditions							
Sample	H2	O2	Air	C2H2	T (C)	d (cm)	Ti (at %)	Ash Corrosion (Wt Loss %)
Control							-	38.47
H ₂ /Air	46		9		3200	25	2.6	11.58
H ₂ /O ₂	46	12			3200	25	10.93	1.44
C ₂ H ₂ /Air			9	24	2500	25	5.24	14.08
H ₂ /O ₂	46	12			3200	25	1.91	18.26
H ₂ /O ₂	46	12			3200	25	3.02	17.00
C ₂ H ₂ /Air			9	24	2500	25	1.29	24.63
C ₂ H ₂ /Air			9	24	2500	25	6.54	22.86
C ₂ H ₂ /Air			9	24	2500	25	8.86	12.05
C ₂ H ₂ /Air			9	24	2500	25	3.43	23.52

Impact of HVOF Conditions

Impact of HVOF Conditions on Oxidation

Ti in Surface Coating upon Oxidation

HVOF Optimization

Effect of Coating Time

Spray Parameters		
H ₂ Flow Rate	76 LPM	
O ₂ Flow Rate	13 LPM	
N ₂ Flow Rate	1.8 LPM	
Spray Distance	27 cm	
Temperature	3200°C	
Spray Times	1, 3, 5, 6.5, 8, 10	

SIU Southern Illinois University -

Achievements:

- Facile synthesis of TiC and TiB₂ nanosized powders with narrow size distribution.
- HVOF thermal spray coating of these powders on 304 H and 430 SS substrates.
- Air and salt corrosion characterization of the coated substrates that increased the longevity of the substrate subjected to fireside corrosion in AUSC boiler tubes

