
FE0009260:  ADVANCED JOINT INVERSION 
OF LARGE DATA SETS FOR 
CHARACTERIZATION AND REAL-TIME 
MONITORING OF CO2 STORAGE SYSTEMS 
Enhancing Storage Performance and 
Reducing Failure Risks under Uncertainties 

Peter K. Kitanidis
Stanford University

U.S. Department of Energy National Energy Technology 
Laboratory 

Carbon Storage R&D Project Review Meeting 
Developing the Technologies and Infrastructure for CCS 

August 12-14, 2014



Acknowledgements
• Co-PI: Eric Darve
• Post Doc: Amalia Kokkinaki
• Research Assistants: Judith Li, Hojat Ghorbanidehno, 

Ruoxi Wang
• Former Research Assistant: Sivaram Ambikasaran
• Our LBNL Collaborators:  Jens Birkholzer, Quanlin Zhou, 

Xiaoyi Liu, Keni Zhang 
• Program Manager at DOE: Karen Kluger

Efficient algorithms for Large Scale CO2 inversion                              P. K. Kitanidis                                               2

Large scale CO2 inversion       



Outline
• Role in the program
• Objectives
• Contributions to date
• Ongoing work
• Road ahead
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Current needs in CCS
Support decision making for best design and 
control of CO2 injection and storage operations

• This involves:
• Process simulation of complex, large, multiphase 

systems.
• Dynamic monitoring with instrumentation providing 

near-continuous, but noisy datasets. 
• Assimilation of data of multiple types.
• Uncertainly quantification and risk assessment.
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Our objective
• Develop, test, and apply advanced algorithms for high 

resolution estimation of subsurface properties and CO2
transport and provide uncertainty estimates.
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• Fast Linear Algebra
• High Performance 

Computing 

• Millions of unknowns
• Near-continuous 

monitoring data

• Multiphysics at a 
“fine” scale

• Geostatistics and 
Kalman Filtering

Sound 
statistical 

framework

State of the 
art forward 
simulators

Best 
available 

technology

Large scale 
systems 

Large 
datasets
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Project overview 1/2
Advance Methodologies

• Static inversion  Geostatistical inversion 
Characterization

• Dynamic inversion  Kalman Filter Real-time 
CO2 monitoring
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Project overview 2/2
• Evaluate developed methods for realistic CCS 
examples
• Synthetic cases

• Three-dimensional, heterogeneous, real-sized domains
• Real cases

• Frio-I pilot test and In Salah site
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Static inversion using H matrices

• Hierarchical matrices: data-sparse approximations of non-
sparse matrices.

• Harnessing the hierarchical structure of matrices used to 
describe geospatial correlation, we can dramatically reduce the 
cost of matrix operations.
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S. Ambikasaran, J. Y. Li, P. K. Kitanidis and E. F. Darve, 2013 J. Comp. Geosc. 17:913–927
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• Hydraulic tomography 
application to large-
scale system:           
750 m x 1000 m, 
3x106 unknowns

• < 50 terms needed!
• Inversion completed in 

less than two hours, 
with a storage cost of 
roughly 1.5 GB

Static inversion 
Principal Component Geostatistical Approach

Lee, J. and Kitanidis, P. K. 2014, 
Water Resour. Res. 50
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Dynamic monitoring - CSKF
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• Compressed State Kalman Filter

• Matrix factorization of the covariance
using a fixed basis leads to smaller
matrices and faster computations,
with minimal loss of accuracy of the
inversion algorithm.

Joint estimation of 
permeability and CO2
saturation using 
measurements of CO2, 
pressure, and water 
production rates.
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Dynamic monitoring - HiKF
• Hierarchical Kalman Filter for quasi-continuous data assimilation
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Li, J. Y., S. Ambikasaran, E. F. Darve, and P. K. Kitanidis, 2014 Water Resour. Res., 50

• Reduction of computation cost from 
O(m2) to O(m)   m: # unknowns

Time (sec) Storage (MB)

Number of unknowns, m

CO2 monitoring with 
seismic travel times

30 hrs 120 hrs
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U

E
H
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F
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Dynamic monitoring – Spec KF
• Spectral Kalman Filter  A Kalman Filter with better

convergence than EnsKF, combining:
• Low-rank representation of covariance matrices (hierarchical)
• Matrix-free calculation for non-linear problems (i.e., no explicit 

calculation of Jacobian)
• Avoid constructing and updating the full covariance matrix
• Works best for high-frequency data
• Can handle less smooth functions. 
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Dynamic monitoring – Spec KF
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• Negligible difference from (full) 
Kalman Filter in estimation

• Computation time of Spec KF 
increases slowly with problem size
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Synthetic Cases 
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The mathematical methods we have developed allow us to 
handle realistic synthetic cases, with high heterogeneneity
and diverse and numerous observations.
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Applications
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~24,000 unknown 
permeabilities

640 m x 640 m x 20 m
synthetic domain
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Application to real sites
• Many challenges:

• Diverse and sparse datasets
• Poor prior knowledge
• Even larger number of unknowns
• Forward model simulation challenges
• Tendency to oversimplify and undersimulate

• Fast algorithms cannot make up for the lack of
information in the data; but they are necessary if
we want to improve our rough prior models and
operation design, as new data become available
in real time.
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Frio – I site
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Frio-I site
Two-well setup: injection and pumping well
Datasets

• Quantitative geophysical data indicate two major 
preferential pathways that CO2 followed upon injection.  
• One objective: confirm preferential flow pathways and refine prior 

geological model. 

Efficient algorithms for Large Scale CO2 inversion                              P. K. Kitanidis                                             18

Prior to CO2 injection During CO2 injection
Pumping tests CO2 saturation vertical profiles
Thermal tracer tests Temperature vertical profiles
Conservative tracer tests Pressure
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In Salah site

• Fewer data yet even larger scale:
• 27 km x 43 km, 3 horizontal wells

• Even more complex physical problem
• Fractured storage system

• Challenging the limits of forward and inverse modeling
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In Salah site
• Challenge: To use high resolution InSAR data for surface 

deformation to calibrate geomechanical model and 
identify heterogeneity.
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Summary
• Faster data-assimilation algorithms make it possible to

answer crucial questions about CCS design and
operation.

• We have developed inversion algorithms that provide big
computational speed-up and storage cost savings:
• Computational efficiency and accuracy validated using synthetic

examples.
• Currently being tested on real-sized domains with synthetic and

real data.

• Project products will include guidance documents and
user-friendly inversion packages that can be used to
optimize CO2 injection design and operation at real sites.
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Approach
• Develop inversion methods that utilize fast linear algebra tools

• Take advantage of structure and properties of the problem
• Compute only what is needed
• Compute at as high accuracy as needed 

• Utilize modern computational environments (parallel 
computing)

• Can be used as black-boxes without specialized knowledge

• By doing that, we can :
• Process large datasets in real time with modest computer resources
• Provide estimates and their uncertainties to inform decision making
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Appendix
• These slides will not be discussed during the presentation, but are 

mandatory
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Organizational Chart

PI: Peter Kitanidis

Task 2: Stochastic Inversion 
Development
Task Lead: Peter Kitanidis1

Participants: Eric Darve1, Judith Li1, 
Hojat Ghorbanidehno1, Amalia 
Kokkinaki1

Task 3: Efficient Algorithms and 
GPUs
Task Lead: Eric Darve1

Participant: Hojat Ghorbanidehno1, 
Ruoxi Wang1

Tasks 4 & 5: Methodology Testing/ 
Application
Task Lead: Quanlin Zhou2 & Peter 
Kitanidis1

Participants: Xiaoyi Liu2, Judith Li1, Amalia 
Kokkinaki1, Jens Birkholzer2

Task 1: Project Management and 
Planning
Task Lead: Peter Kitanidis1

Participants: Eric Darve1 & Quanlin 
Zhou2

1Stanford University, 2Lawrence Berkeley National Laboratory
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Project Team
At Stanford University:
• Sivaram Ambikasaran, PhD candidate in 

Computational and Mathematical Engineering 
(graduated in Aug 2013)

• Judith Li, PhD candidate in Civil and Environmental 
Engineering (CEE)

• Hojat Ghorbanidehno, PhD candidate in Mechanical 
Engineering (ME)

• Ruoxi Wang , PhD candidate in Computational and 
Mathematical Engineering (CME) 

• Amalia Kokkinaki, post-doc in CEE
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Project Team
At Lawrence Berkeley National Laboratory:
• Jens Birkholzer, collaborates on mathematical 

modeling issues
• Keni Zhang, collaborates on high-performance 

computing and the use of TOUGH2 model 
• Xiaoyi Liu, collaborates on both forward modeling 

and inversion (left in May 2014)
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Gantt Chart
DOE FY 2013 2014 2015
Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Task 1.0. Project Management/Planning
Subtask 1.1: Project Management Plan A

Subtask 1.2:Project Planning and Reporting B

Task 2.0. Development of Stochastic Inversion Methods
D1

Subtask 2.1. Development of Fast Bayesian Inverse Methods C1

Subtask 2.2. Development of Efficient Joint Inversion Methods for Dynamic 
Monitoring

Subtask 2.3. Fusion of Results from Separate Inversion of Multiple Different Data 
Sets

Task 3.0. Development of Efficient Inversion Algorithms

D2

Subtask 3.1. Algorithms for Solving Large Dense Linear Systems
C2

Subtask 3.2. High-Performance Implementation using GPUs

Task 4.0. Testing of the Joint Inversion Methodology for a 
Synthetic Geologic Carbon Storage Example

E2

Subtask 4.1. Generation of the “True” Fields of Porosity and Permeability of the 
Heterogeneous Storage Formation

Subtask 4.2. Generation of the Simulated Data of Hydro-Tracer-Thermal Tests and 
CO2 Injection Test 

E1

Subtask 4.3. Joint Inversion of the Simulated Data

Task 5.0. Application of the Methodology to Test Sites F3,F4

Subtask 5.1 Application to Test Site One F1

Subtask 5.2 Application to Test Site Two F2



Project Workplan/SOPO Project Tasks
• Task 1:  Project Management and Planning 

• Subtask 1.1: Project Management Plan
• Subtask 1.2:  Project Planning and Reporting

• Task 2.0:  Development of Stochastic Inversion Methods 
• Subtask 2.1:  Development of Fast Bayesian Inverse Methods 
• Subtask 2.2:  Development of Efficient Joint Inversion Methods for 

Dynamic Monitoring
• Subtask 2.3:  Fusion of Results from Separate Inversion of Multiple 

Different Data 
• Task 3:  Development of Efficient Inversion Algorithms 

• Subtask 3.1:  Algorithms for Solving Large Dense Linear Systems 
(FDSPACK + Low Rank Approximations)

• Subtask 3.2:  High-Performance Implementation using GPUs in 
TOUGH+CO2
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Project Workplan/SOPO Project Tasks
• Task 4.0:  Testing of the Joint Inversion Methodology for a 

Synthetic Geologic Carbon Storage Example 
• Subtask 4.1:  Generation of the “True” Fields of Porosity and 

Permeability of the Heterogeneous Storage Formation 
• Subtask 4.2:  Generation of the Simulated Data of Hydro-Tracer-

Thermal Tests and CO2 Injection Test 
• Subtask 4.2.1:  Creation of the Simulated Data for Hydro-Tracer-Thermal Tests Prior 

to CO2 Injection 
• Subtask 4.2.2:  Creation of the Simulated Data for CO2 Injection Test

• Subtask 4.3:  Joint Inversion of the Simulated Data 
• Task 5.0:  Application of the Methodology to Test Sites 

• Subtask 5.1 – Application to Test Site One
• Subtask 5.2 – Application to Test Site Two



Project Deliverables
• 1. Task 1.0 – Project Management Plan
• 2. Task 2.0 – Developed inversion algorithms and their demonstration cases, 

with the final joint inversion tool system, as documented in a quick-look 
report.

• 3. Task 3.0 – Developed fast large linear system solvers with different 
computational algorithms as documented in a quick-look report. 

• 4.  Task 4.0 – Test results of the joint inversion methodology for a synthetic 
Geologic Carbon Storage example as documented in a quick-look report. 

• 5.  Task 5.0 – Test results of application of the methodology to field test sites
as documented in a quick-look report. 

• 6.  Task 5.0 – Validation of developed computational tools performance and 
cost as documented in quick-look report.

• 7.  Project Data – Data generated as a result of this project shall be 
submitted to NETL for inclusion in the NETL Energy Data eXchange
(EDX), https://edx.netl.doe.gov/.

https://edx.netl.doe.gov/
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