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Benefit to the Program

= Research will develop and validate a portfolio of simplified
modeling approaches to predict the extent of CO, plume
migration, pressure impact and brine movement for a
semi-confined system with vertical layering

= These approaches will improve existing simplified models
In their applicability, performance and cost

= The technology developed in this project supports the
following programmatic goals: (1) estimating CO,, storage
capacity in geologic formations; (2) demonstrating that 99
percent of injected CO, remains in the injection zone(s);
and (3) improving efficiency of storage operations



Benefit to Stakeholders

Provide project developers with simple tools to
screen sites and estimate monitoring needs

Provide regulators with tools to assess geological
storage projects quickly without running full-scale
detailed numerical simulations

Enable risk assessors to utilize robust, yet simple
to implement, reservoir performance models

Allow modelers to efficiently analyze various CO,
Injection plans for optimal well design/placement



Project Overview
Goals and Objectives

= Objective = Develop and validate a portfolio of
simplified modeling approaches for CO, sequestration
In deep saline formations

o0 Reduced physics-based modeling - where only the most
relevant processes are represented

o Statistical-learning based modeling - where the simulator
IS replaced with a “response surface”

0 Reduced-order method based modeling - where
mathematical approximations reduce computational burden

o0 Uncertainty and sensitivity analysis — to validate the
simplified modeling approaches for probabilistic applications
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Reduced Physics Based Models

Background
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Reduced Physics Based Models
Approach (using GEM)
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Reduced Physics Based Models

Simulation Scenarios

Parameter Description Units REISEI6E oy AT Comments
value Value Value
1 he Thickness of m 150 50 250
reservoir
2 her Thickness of m 150 100 200
caprock
Average horizontal
3 Kavg,R permeability of mD 46 12 220
reservoir
i : perfectly
Vpp DY P arson's -- 0.55 0.35 0.75 correlated
coefficient :
Wlth kavg,R
Average horizontal
4 Kavg,cr permeability of mD 0.02 0.002 0.2
caprock
5 kv/Kn Anisotropy ratio -- 0.1 0.01 1
6 Q CO: Injection rate MMT /yr 0.83 0.33 1.33
: perfectly
L oty radlgs & km 10 5 7 correlated
reservoir :
with Q
7 R Porosity of reservoir -- 0.12 0.08 0.18
8 ¢cr Porosity of caprock -- 0.07 0.05 0.1
Capillary pressure B decrease P. | increase P
. Pe.cr model of caprock TEEEEE by 3X by 3X
IEfIeEler s Increasing Increasing
10 I pelrmegblllty - FEIEOT from top from bottom
ayering Q



Reduced Physics Based Models

Insights on Injectivity and Storage Efficiency
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Reduced Physics Based Models

Dimensionless Injectivity — Predictive Model
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Reduced Physics Based Models

Storage Efficiency — Predictive Model
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Reduced Physics Based Models

Average Pressure in Reservolir

P, = f2nt,, P, = fC2nat,,
For a no-caprock system C depends on ratio of reservoir
f depends on relative permeability storativity to total storativity
o f C Ref Rel Perm
053 R?=0.9985 ¥

1
0.92 ¢ Seriesl /
0.91 / 0.8

one-one
09 ¢ Seriesl 0.6 /
0.89 '
——Linear (Series1) /

0.88 0.4
0.87 /

0.86 0.2
085 / (Rmax/RCOZ)2 [ x x SR/(SRfSCR) \

0.84

20 25 30 35 40 45 50 55 0 0.2 0.4 0.6 0.8 1

12



Statistical Learning Based Models
Background

Goal = replace physics-based
model with statistical equivalent I

-

Experimental desigh = BB

selection of points in parameter
space to run limited # of
computer experiments

Response surface =
functional fit to input-output data .
to produce “proxy” model

Two common options

— Box-Behnken (BB) design
3-pt + quadratic response surface

— Latin Hypercube sampling (LHS)
multi-point + higher-order model

LHS
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Statistical Learning Based Models
Metamodels Evaluated
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Statistical Learning Based Models
Box Behnken Design — Metamodeling
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Statistical Learning Based Models
Proxy Models — Plume Radius
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Statistical Learning Based Models
Generating Designs

Box-Behnken Alternative
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Statistical
Learning
Based
Models

Evaluating
Designs

BB Design [krig]
BB Design [krig2]
BB Design [poly2]
BB Design [mars]
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AP Design [krig2]
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Reduced Order Method Based Models
Background (1)

Simulator
: Production/
Controls ! Injection Rate
POD-TPWL

= Proper Orthogonal Decomposition (POD)

A Represent high-dimensional state vectors (e.qg.,
pressure & saturation in every grid block) with small
number of variables by feature extraction

= Trajectory Piecewise Linearization (TPWL)

Q Predict results for new simulations by linearizing

around previous (training) simulations
19



Reduced Order Method Based Models
Background (2)

Order
reduction

U

POD

+

Nonlinearity
treatment

U

TPWL

Linear expressions
w/ 100s of variables

U

POD-TPWL

= Retain the physics of the original problem

= QOverhead is required to build the POD-TPWL model

= Evaluation of POD-TPWL model takes only seconds

= Applied previously to oil-water problems for
optimization and history matching (Cardoso and
Durlofsky 2010, 2011; He et al. 2011, 2013)

20



Reduced Order Method Based Models
Stanford VI Problem (CO, Storage+EOR)

Figure 11. Geological model and well locations
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Reduced Order Method Based Models
POD-TPWL Performance
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Reduced Order Method Based Models
4-Horizontal Well Problem (CO, Storage)

Idealized problem based on CO2
Storage in Mt Simon sandstone
planned for the FutureGen 2.0 site
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Reduced Order Method Based Models
POD-TPWL Performance
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Summary

* Progress in developing simplified predictive models for
layered reservoir-caprock systems

0 Reduced physics models for injectivity and plume radius
o Improved proxy modeling workflow using BB/LHS designs

o Application of POD-TPWL scheme to CO,-brine systems

 Benefits to stakeholders

o Site developers, regulators = simplicity, limited data

o0 Modelers, risk assessors = computational efficiency
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Accomplishments to Date

RPBM

Developed simplified predictive models for dimensionless
Injectivity and CO,, plume migration

Made progress towards predictive modeling of average
pressure behavior within injection reservoir

SLBM

Compared performance of different metamodeling
approaches for building proxy models

Evaluated alternatives to commonly used sample designs
(Box-Behnken and Latin Hypercube sampling)

ROMBM

Demonstrated applicability of POD-TPWL for CO, injection
Into saline aquifers using a compositional simulator

Evaluated different constraint reduction approaches
26



Summary and Next Steps

RPBM

Reduced physics based modeling appraches for injectivity,
plume migration and pressure buildup developed

Topical report in preparation for current FY deliverable
Models to be validated using uncertainty/sensitivity analysis

SLBM

Statistical learning based proxy modeling approaches —
combining sampling and metamodeling - developed

Topical report in preparation for current FY deliverable
Models to be validated using uncertainty/sensitivity analysis

ROMBM

POD-TPWL schemes to be tested for black-oil and
heterogeneous geology models

Models to be validated using uncertainty/sensitivity analysis
27



Appendix

These slides will not be discussed during the
presentation, but are mandatory
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Gantt Chart

BP1 BP2 BP3

10/2012-09/2013 | 10/2013-09/2014 | 10/2014-09/2015

Task Name
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Task 1: Project Management

1.1 Project Management & Planning

1.2 Update Project Mgmt. Plan

1.3 Progress Reporting oloO| Ol o]0

1.4 Project Controls

1.5 Deliverables and Reporting

Task 2: Simplified physics based modeling

2.1 Numerical experiments

2.2 Models for two-phase region behavior

2.3 Models for pressure buildup

Task 3: Statistical learning based modeling

3.1 Design matrix generation

3.2 Computer simulations

3.3 Analysis of computer experiments

Task 4: ROM-based modeling

4.1 Black-oil ROM procedures

4.2 Compositional ROM procedures

Task 5: Validation using UA/SA

5.1 Problem definition

5.2 Probabhilistic simulation

5.3 Analysis of results
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