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Presentation Outline

SECARB Early Test Goals
Site Characterization

Monitoring and modeling response to
Injection In the deep subsurface

Monitoring the shallow subsurface — what
would response to leakage or migration
look like?

Remaining work
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« SECARB Early Test Goals



Goal: Regional Carbon Sequestration Program
goal: Improve prediction of storage capacities

Existing data 7,754 acres x 90 ft

on reservoir net pay x 25.5%

volumetrics porosity
(Chevron, 1966)

X E [pore volume occupancy (storage efficiency)] = Storage capacity
injection rate — limited by pressure response
Observation: pore

Measure Increase predictive volume occupancy
saturation during capabilities by was rate and

multiphase plume
evolution numerical models

validating pressure
dependent: not a

single number




Goal: Regional Carbon Sequestration Partnership
program goal: Evaluate protocols to demonstrate that
CO, is retained
High confidence in storage m
permanence through characterization
Oil and gas trapped
over geologic time

Material
Impact: Uncertainty and risk assessment Semi-quantitative assessment
failing to via Certification Framework
retain
P&A well Limited analogy
RESIEEIDR performance in between injected and
Questions retention? natural fluid retention

Off structure Response to
migration? pressure elevation?

shallow We”'pad

vadose  Ground Proto_c_ol_
s I — Sensitivity &
Selected chem.  AzMI reliability
0 C [T1E1

pressure 4-D

Seismic 4-D

|Z pressure Microseismic
deep VSP p
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e Site Characterization



Characterization
Regional setting (Gulf Coast Wedge)

Location

Tuscaloosa Formation - depositional
system

Confining system (overburden)



Gulf Coast Wedge

B B’
North South
Debth Oklahoma | Texas Texas- Texas- Sigsbee
ep Ouachita | ) Louisiana Louisiana Escarpment
(km) East Texas Basin Shelf Slope

Mountains i

5 =
10 - .
15+ B [_] Quaternary I Middle Jurassic P-p-- QAd4740x
[] Tertiary-Neogene Upper Triassic-Lower Jurassic
20~

[ Tertiary-Paleogene  [[] Upper Mississippian-Pennsylvanian
[ Upper Cretaceous  [[_] Cambrian-Lower Mississippian
[ Lower Cretaceous

[ Upper Jurassic Vertical exaggeration x10

Gulf of
Mexico

-] Precambrian

Galloway and others,2000



Location

A Injection well
® Sample well
* Other well
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Lower Tuscaloosa sand and conglomerate fluvial
depositional environment

P,

" Detail Area
Study DAS

‘1
« H Zeng, BEG
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Characterization of Overburden
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 Monitoring and modeling response to
Injection In the deep subsurface



Monitoring response to injection in the deep
subsurface

A Injector

@ Producer
(monitoring point)

® Observation Well

¢ RITE Microseismic

4-D seismic

Detail Arra
Study

15

GIS base Tip Meckel, BEG




Detalled Area Study (DAS)
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LLNL Electrical Resistance Tomography-

changes In response with saturation

F1 F2 F3

Time-lapse sequence of resistivity changes observed during injection
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CFU31F-2,

away from injector

2"d SF6 on May 9 Arrive on May 20

4.E-06 * 600
< _ >V ) 255 h R
Travel time = 317 h 1 s00
3.E-06 5
88
— 400
2.E-06 o ;E%é _
%O + 300E
§ e ;
1.E-06
WS O 599 gf + 200
. Q‘%&gﬁg ¥
0.E+00 & ' 0 ' 1 100
4/ 5/12 5/17 5/22 5/27
-1.E-06 0
CFU31F-3, away from injector
Arrive on May18
5.E-06 < 211 h ;l 600
JE08 Travel time =319 h - - -
3.E-06 400
2.E-06 305
;
1.E-06 200
8.E-21 o 100
4/12




Pressure, psig

Wellhead pressure indicating

breakthrough
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Pressure Monitoring in AZMI (Above
zone monitoring interval)
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Pressure [MPa]
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e COMSOL: simulation model
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Pressure [kPa]
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4 D seismic- Historic data history
matching (1942-1967)
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Ternary saturation map (1942)
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Volume 18, October 2013, Pages 449-462

International Journal of Greenhouse Gas m

Static and dynamic reservoir modeling for geological CO,
sequestration at Cranfield, Mississippi, U.S.A.

Seyyed Abolfaz| Hosseini® & &, Hamidreza Lashgari®, Jong W. Choi®, Jean-Philippe Nicot®, Jiemin Lu?,

Susan D. Hovorka®
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Average Reservoir Pressurre (psi)

Ternary saturation map (1966)
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Average Reservoir Pressurre (psi)

Ternary saturation map (2007)
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CO, Injection Simulation (2007-2010)
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CO, Injection Simulation (2007-2010)
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CO, Injection Simulation (2007-2010)
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CO, Injection Simulation (2007-2010)
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4-D Seismic difference (2010-2007)

~— — TN IW Tou

Injection
began July
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Comparison to 4-D Seismic

Red and brown areas are high
gas saturation regions
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Presentation Outline

* Monitoring the shallow subsurface — what
would response to leakage or migration
look like?



Monitoring the shallow subsurface —
what would response to leakage or

migration look like?
1 o 1 2 e 5 Groundwater sampling
Vies point at each

Injector
_ Pluggedand ) Selected
abandoned soil gas
S well — monitoring
i O Producer points

35
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Groundwater at the Cranfield Site:
Sampling

= More than 12 field campaigns since 2008
= ~ 130 groundwater samples collected for chemical
analysis of -

Cations: Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe,
K, Mg, Mn, Mo, Na, Pb, Se, Zn

Anions: F, Cl, SO,%, Br, NO;, PO,*>
TOC, TIC, pH, Alkalinity, VOC, 5C13

On-site: pH, temperature, alkalinity, water
level

= ~10 samples for noble gases
= ~20 groundwater samples for
dissolved CH, |

C. Yang, BEG



Groundwater at the Cranfield Site
Sampling

e Results (prior to 2013) were summarized in the

peer-reviewed paper

 No obvious change in
groundwater chemistry
was documented

e A step-wise working
procedure for
groundwater chemistry
monitoring was proposed

Step 1. Characterize shallow groundwater geochemistry

L

Step 2. Identify a set of geochemical parameters for

detecting CO2 leakage

Step 3. Test and validation

‘ Numerical modeling

‘ Lab experiments

-
|
|

Field experiments
(Push-pull tests)

Step 4.
Application

Groundwater chemistry
monitoring for detecting
CO2 leakage

Near-Surface Monitoring of Large-Volume
COs Injection at Cranfield: Early Field Test
of SECARB Phase |l

Changbing Yang, Katherine Romanak, and Susan Hovorka, University of Texas at Austin; Robert M. Holt,

University of Mississippi; Jeff Lindner, Mississippi State University; and Ramon Trevino, University of Texas at Austin

C. Yang, BEG

QAe1189

SPE JOURNAL




Groundwater at the Cranfield Site
Laboratory and Modelling

» Testresponse of groundwater chemistry to CO,
leakage under laboratory conditions

« Samples of sediments & groundwater collected
e Bubbled with Ar for a week, then with CO,, for

~half year

Pros: easy to do, little cost
Cons: Non-realistic conditions

= Modeled concentrations of major ions showed overall increasing trends, depending on
mineralogy of the sediments, especially carbonate content.

» Modeling results suggested that reductions in groundwater pH were more significant in
the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential

groundwater acidification.

= Mobilization of trace metals was {gylﬂﬂn["ﬁ"]-ﬂl_
likely caused by mineral {eNce & lecnnoioqy

dissolution and release of surface |nverse Modeling of Water-Rock-CO, Batch Experiments: Potential
complexes on clay mineral Impacts on Groundwater Resources at Carbon Sequestration Sites
su rfa ces Changbing Yang,*'-r Zhenxue Daj,fF Katherine D. Roma.na.k,f Susan D. Hovorka,Jr and Ramén H. Trevifio®

C Yan BEG "Bureau of Economic Geology, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, United States
. g' "Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States



Groundwater at the Cranfield Site
Single-Well Push-Pull Test

CO2 + Tracer Groundwater Sampling

. Maximum concentrations of trace -
metals observed, such as As and Pb,
are much less than the EPA v

. . [l
contamination levels;

« Single well push-pull test appears to be
a convenient field controlled-release

. . . Injection Resting Period Pumping
test for assessing potential impacts of
CO, leakage on drinking groundwater esting well
resources; :

Results were summarized in the following

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/flocatel/ijggc

Single-well push-pull test for assessing potential impacts of CO, leakage on
groundwater quality in a shallow Gulf Coast aquifer in Cranfield, Mississippi
Changbing Yang®*, Patrick J. Mickler®, Robert Reedy®, Bridget R. Scanlon®, Katherine D. Romanak*®,
Jean-Philippe Nicot#, Susan D. Hovorka#, Ramon H. Trevino®, Toti Larson”

* Bureau of Economic Geology, The University of Texas ar Austin, 10100 Surnet Koad, Bldg 130, Austin, TX 78758, Unired States
b Department of Geological Sciences, The University of Texas ar Austin, 2275 Speedway Stop CO000, Austin, TX 78712-1722, United States

C. Yang, BEG

0 05 1 2 kilometers CAe1088
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Groundwater at the Cranfield Site
Numerical Modelling

« To assess sensitivity of
geochemical parameters to

Preliminary results were summarized
CO, leakage

in the following paper

uifer se 2
//’ Carbun:!:- é;?rasqpu?r'n ! .
_f Carbonate-rich aguif
/' I groundwater chemp
/ Redex condiions Geochemical sensitivity to CO; leakage: detection in potable aquifers at
. carbon sequestration sites
> - T Changhing Yang', Susan D. Hovarka,
Ty i | e Michael H. Young and Ramon Treving s
3 ' »| HCOa, 8%C, 3',-.»’ Greenhouse Gases: Science
: = e Article first published online: 31 JAN 2014 g g and Technology
b elemenls | | f— |
: DOl 10.1002/ghg. 1408 B Volume 4, Issue 3, pages
384-399 June 2014

_—
)

E}z Ie-akage_

Dissolved CO, & DIC in groundwater are most sensitive to CO, leakage
Alkalinity is moderately sensitive, with the best response in the presence of
carbonates in the aquifer sediments while groundwater pH shows best response
In the aquifer sediments with little carbonates.

For monitoring purpose, dissolved CO, & DIC are better indicators than pH and
alkalinity in potable aquifers at geological carbon sequestration sites.

C. Yang, BEG



Groundwater at the Cranfield Site
Next Steps

» Continue field campaigns for groundwater sampling

» Comprehensively analyze the field results on groundwater

» Compare our groundwater study at the Cranfield site to other
sites, such as Weyburn,...

» Conduct reactive transport modeling
= A preliminary model was s
completed in 2012 by QEA
= The new model will focus on

assessing

» Impacts of natural
groundwater flow on CO,
leakage monitoring and SRR
change in groundwater quality EEAET

» Heterogeneity

» Monitoring well spacing




Airborne Magnetics for Characterization

Uninterpreted Identification of infrastructure and geologic variatblity

Four wells,
strong signal

o
-

2
— ES— KilO eters

3 e | Magnetic Intensity (nT) ° Wells Residual Magnetic Intensity (nT)
Leg . e High : 274.5 Legend — Pipelines wem High 1 274.5
== Low:-2183 Pine, Hovorka, Anderson, BEG — Roads = low:-2183

Not found yet



Process-based Near-Surface Monitoring

Produce CO,
Concentrate CO,

Vadose
zone

Consume CO,

Disperse CO,

Produce,
Plant activity Soil carbonate consume,
Organics — CO,  Soil moisture redistribute
CO,

Weather fronts

Katherine Romanak BEG



“P-Site”

« Pad, Pit, Plants,
P&A well

C’ear\c Gravel Pad
nghf\of_% * Localized
o empty%e T P&A well monitorin g
it j beginning Sept
IR S . Y
e g e 13 multi-depth
| 1950 i - ' soil gas sampling

stations - 5m
depth
* Localized soil gas
anomaly at 1-03
— CH,<50vol. %
— CO,<45vol. %

Katherine Romanak BEG



Process-Based Monitoring

No need for years of background
measurements.

Promptly identifies leakage signal
over background noise.

Uses simple gas ratios
(CO,, CH,, N,, O,)
Can discern many CO, sources
and sinks
— Biologic respiration
— CO, dissolution

— Oxidation of CH, into CO,
(Important at CCUS sites)

— Influx air into sediments
— CO, leakage

Katherine Romanak BEG
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Process-Based Monitoring

Y

Developed and tested at Cranfield

Validated at ZERT Controlled-Release Field

Laboratory

» Applied at the Kerr Farm, Weyburn-Midale
Qilfield where landowners claimed leakage

» Used at Otway Project, Australia, and
considered for use at QUEST and Gorgon

» Being developed for use in offshore marine
environments

» Goal to collaborate with Mesa Photonics to

develop continuous monitoring capabillities

for upscaling

Y

Romanak et al., in press, Process-based soil gas leakage
assessment at the Kerr Farm: comparison of results to
leakage proxies at ZERT and Mt. Etna, in press International
Journal Greenhouse Gas Control




“User-Friendly” Data Collection

« Simple data reduction
 No complex correlations with weather
« Graphical analysis can be done instantly

e Continuous monitoring capability will give instant real-
time leakage detection information.
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Near-Surface Leakage Assessment
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Accomplishments & Key Findings

« Accomplishments to Date
— Monitored CO, injection since 2008

" 550 BE00 G700 GO0 6000 7000 700 7000 7300 FADD 7500 7800

— Injection through 23 wells, cumulative volume § @ 100
over 8 million metric tons B oee
— First US test of ERT for GS £

0.64
0.57

— Time lapse plume imaging with cross well
seismic, VSP, RST, and surface 3-D

— RITE microseismic — no detect
— Groundwater sensitivity assessment push-pull &

— Recognized by Carbon Sequestration Leadership 8 090 0omer
Forum (CSLF) in 2010 for research contributions  [Fo2 cee v o owe oo e v iz i v vee ]

— SIM-Seq inter-partnership model development
test

— Knowledge sharing to Anthropogenic Test and
other U.S./International CCS projects

 Key Findings
— Dense data allows assessment of fluid flow
measurement and modeling uncertainty
— Above zone pressure monitoring method viability
— Process-based method viable

oo oo
R W o,
B B W o

0.21
0.14
0.07
0.00

EB0D  BTO0 BB00 4900 OO0 FA00 V200 TS
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Publications

Modeling and historysmatching 10 Overview and synthesis 10

Groundwater
Characterization 3

Geochemistry a
tracers 4

Risk assessmen

d geomechanics 2

www.gulfcoastcarbon.org bookshelf >0



http://www.gulfcoastcarbon.org/

Future plans

 Knowledge sharing
— Technical, public and policy
— Closure issues
— CCUS concept
* Analysis of data collected
— Joint/comparative inversions
* Whole plume inventory
» Uncertainty methodologies
» Airborne geophysics
« Continued data collection
— Continue groundwater and soil gas observation
— Final use of DAS obs. wells
e CO, geothermal test
* Pressure interference for leakage detection
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Characterization Using 1943-
1966 Production History

P J J Parmeabiling i jni]
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¥
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Seyyed Hosseini, BEG

Total Monthly Oil production (thousand barrels),
88 wells

«==Cumulative Monthly Oil Production (hundred

d bbl), 88 wells

thousand barrels

Average Monthly Water Injegissg




Injection and Monitoring Status (need update to 2014)
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Theory - Poromechanics

> Permeable layer

« Conventional geomechanics: pore pressure — stress — strain — displacement
- Diffusive pressure disturbance penetrates 10-100m in 45 years (Segall, 1985)
e Poroelasticity: displacement — strain — stress — pore pressure

- Can be used to predict: 1) pore pressure change in AZMI zone, 2) displacement
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Simulation Condition

Surface

o\

Above Zone (AZMI)

O

Fluid —

Injection Zone (12)

O O O O O

o O O O 0O 0

o o0 o o0 o0 o0 O O O 0O O 0 0O 0O 0O 0O

Geometric configuration: 1) 2D plain strain, 2) Axisymmetric
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Historic data history matching

e Operations started in 1943 until 1967 when
field abandoned.

e This is important to understand the reservoir
condition prior to CO, injection specially oil,
water and gas saturations.

e Gas saturations could affect 4-D seismic.
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4-D Seismic difference (2010-2007)

Total Amount injected
»5,000,000
4,000,000 1o 5,000,000
3,000,000 to 4,000,000

2,000,000 1o 3,000,000

Injection Lo il . : : .I..‘n:;t;oz.omw .
began July ' :
15, 2008

® 9

s€line2007 Survey
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No Microseismic
response measured

e During injection LBNL surface
and downhole study

e Unsuccessful Pinnacle study

e WESTCARB/RITE
Microseismic study

— 12/2011-present
e 6 3-Csensorsin 300 ft boreholes

WUNMREI BRI R (£6R)

— No detection
— Wind, storm operational noise
Makiko Takagishi, RITE

61






Program Goals — Early Test (1)

Predict storage capacities within +/- 30%

Well known based upon production history; Early Test

advanced the understanding of efficiency of pore-volume occupancy (E factor).

Success metrics: Measure saturation during multiphase plume evolution
(completed). Increase predictive capabilities (modeling underway).

Evaluate protocols to demonstrate that 99% of CO, is retained

Permanence of geologic system well understood prior to test because of
retention of large volumes of hydrocarbon.

Retention uncertainties lie in well performance. Early Test is evaluating
methods to assess well performance.

Success metrics: Measure changes above the injection zone along well, above
zone monitoring interval (AZMlI), and at surface (P-site) over long times (near
complete)

Contribute to development of Best Practices Manuals

Early Test researchers have contributed to Best Practices Manuals on MVA,
characterization, risk and modeling. Assistance has been provided on related
protocol development, including IOGCC (U.S.), Pew Center accounting study
(U.S.), IPAC-CO, (Canada), and CO,-Care (EU), FutureGen 2 (PNNL) review,
BGS, IEAGHG networks, and others.
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Program Goals — Early Test (2)

Goal 1 - Injectivity and Capacity

. Advanced understanding of efficiency of pore-volume
occupancy (E factor) by measuring saturation during
multiphase plume evolution.

* Increase predictive capabilities through modeling.

Goal 2 - Storage Permanence

. Measure changes above the injection zone along well, above zone monitoring interval
(AZMI), and at surface (P site) over long times (underway)

Goal 3 - Areal Extent of Plume and Potential Leakage Pathways

* Measured down-dip extent of plume via VSP and 4-D seismic to improve the uncertainty
regarding the radial flow (down dip/out of pattern) in the 4-way closure.

* Increase predictive capabilities through modeling

Goal 4 -Risk Assessment

* Saline storage site is located in EOR field with operator owning CO,.
« Completed certification framework assessment of leakage risk.

 Confirmed well performance as highest uncertainty and focus of monitoring research.
« Geomechanics and RITE/WESTCARB microsiesimic study
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Program Goals — Early Test (3)

Goal 5 - Develop Best Practices

 Participated in developing BPMs for MVA, characterization,
risk and reservoir modeling.

Goal 6 - Public Outreach and Education

* On-site outreach handled by Landmen.

« SSEB and Early Team focus on O&E in public and technical arenas.

 Hosted site visits, responses to local and trade media, Fact Sheets, and website postings
of project information.

Goal 7 - Improvement of Permitting Requirements
* Permits obtained by site operator.

* Project team focus is on development of regulatory framework for GHG.

* Provided experience with monitoring instruments and well performance to decision
makers.
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