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Presentation Outline

• Project benefit to CO2 program

• Project goals and objectives

• Project approach

• Outcomes

• Accomplishments to date

• Summary
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Benefit to the Program
CARBON STORAGE PROGRAM MAJOR GOALS

• Support industry’s ability to predict CO2 storage capacity in geologic 
formations to within ±30 percent. 

• Develop and validate technologies to ensure 99 percent storage 
permanence. 

• Develop technologies to improve reservoir storage efficiency while 
ensuring containment effectiveness. 

BENEFITS STATEMENT
This project will address Area of Interest 3, Field Methods to Optimize Capacity 
and Ensure Storage Containment. The identification of field techniques to 
improve storage efficiency above the baseline CO2 storage efficiency in specific 
geologic formation classes of different depositional environments identified by 
DOE as promising storage formations will provide better regional assessment 
estimates and site screening criteria. The research will contribute to the 
program’s effort of estimating CO2 storage capacity in geologic formations.
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Project Overview: 

Goals
• Quantify storage efficiency for different depositional 

systems;
• DOE’s “High” and “Medium” storage potential ratings

• Identify methods to
• Improve E;

• Control CO2 plume footprint
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Project Overview:
Objectives

• Select Illinois Basin (ILB) formations representing different 
depositional systems

• Develop rigorous geologic and geostatistical models of 
selected formations

• Conduct numerical simulations 

• Estimate E

• Depict CO2 plume distribution within formation flow units

• Determine depositional system-based strategies to improve E
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Background 

Matrix of Field Activities in Different Depositional Environment
Depositional 
Environment

High Potential Medium Potential Low or 
Unknown 
Potential

Deltaic Shelf Clastic Shelf Carbonate Strandplain Reef Fluvial Deltaic Eolian Fluvial & Alluvial Turbidite Coal Basalt 
(LIP)

Large Scale – 1 – – 1 3 – 1 – – –

Small Scale 3 2 4 1 2 – – 2 – 5 1

Characterization 1 – 8 6 – 3 3 2 2 – 1
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• CO2 storage potential Matrix (NETL, 2010)
• Large Scale, Small Scale and Characterization are DOE defined 

groups



Approach for each depositional 
environment
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Depositional Environments

Depositional 
Environment 

Storage Potential 
(DOE’s Rating)

ILB 
Formation

Other US Basin formations

Deltaic High Benoist Frontier Formation (Rocky Mountain basins)

Shelf Clastic High Cypress Tapeats Sandstone (Colorado Plateau)
Hamilton and Martinez (Sacramento Valley Basin)

Shelf Carbonate High Ste. Genevieve
Naco and Martin (Colorado Plateau); 
Knox (Illinois and Michigan Basins); 

Arbuckle (Ozark Plateau)

Strandplain High Upper Mt. 
Simon

Fleming Group (Gulf of Mexico Basin); 
Pottsville, Parkwood, and Hartselle (Black Warrior Basin)

Reef High Racine Cisco-Canyon (Permian Basin)

Fluvial Deltaic Medium Bridgeport Domengine (Sacramento Valley Basin); 
Fleming Group

Fluvial & 
Alluvial Medium Lower Mt. 

Simon
Tuscaloosa (Gulf Coast Basin); 

Stockton and Passaic (Newark Basin)

Turbidite Medium Carper Puente (Los Angeles Basin)
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Conceptual and Geocellular 
Models
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• Conduct geologic mapping
• Available Data

• Logs: spontaneous potential, neutron-density, openhole, and 
casedhole

• Core 
• Outcrops 

• Results
• Cross sections
• Isopach maps
• Structure maps
• Block diagram of the depositional environment

• Software: Geographix and Petra



• Conduct geostatistical analyses using
• Conceptual geologic model
• Digitized logs
• Core data
• Surface maps

• Build geocellular model (4 distributions)
• Porosity 
• Permeability
• Thickness
• Facies

• Flat, no structure
• Software: Isatis
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Conceptual and Geocellular 
Models (cont.)



Example: Shelf Carbonate
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Model Permeability 
distribution (0.1−1000 mD)



Example: Deltaic
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• Permeability distribution (5−300 mD)
• Model area covers isopach map (Seyler 

et al., 2012)



Reservoir Simulations

Input and initial conditions
• Reservoir and PVT properties
• End-point saturations and 

relative permeabilities
• Initial conditions

𝐏𝐏𝐫𝐫𝐫𝐫𝐫𝐫 > 𝐏𝐏𝐂𝐂𝐎𝐎𝟐𝟐,𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 : 1100 psi
𝐓𝐓𝐫𝐫𝐫𝐫𝐫𝐫 > 𝐓𝐓𝐂𝐂𝐎𝐎𝟐𝟐,𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 : 90 oF

• Injection rate : 
18,854 Mscf/d (1 tonne/d)

• No pressure constraint

• Software: Landmark Nexus

Parameter Sandstone Limestone

Swr 0.50 0.50
krw,max 1.00 1.00
Sg,c 0.30 0.20
krg, max 0.25 0.25
m 2.00 2.00
n 3.00 4.00
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End-point saturations & rel. permeability

Fig.: Sandstone relatively curve



Storage Efficiency (E) 
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𝑬𝑬 =
𝑽𝑽𝑪𝑪𝑶𝑶𝟐𝟐
𝑽𝑽𝒑𝒑

• VCO2 : reservoir pore volume contacted 
by CO2. 

• Vp : pore volume available for storage

Warmer colors indicate higher CO2 saturation 
and blue indicates water

Reservoir Simulations, cont.



Reservoir Simulations

• Sensitivity studies 
• Infinite acting aquifer (analytical vs. numerical model)

• Wellblock permeability

• Aquifer permeability averaging method

• Water influx vs outflux
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Aquifer permeability averaging method

Aquifer strength on BHP

• Average reservoir 𝑘𝑘 closely 
exhibit infinite-acting aquifer 
behavior.

Fluid outflux vs. influx

• Outflux-Influx ratio approaches 
1.0 over time.
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Reservoir Simulations

• Sensitivity studies (continued)

• End-point saturations and relative permeabilities

• Swirr : irreducible brine saturation

• Sgc, : critical CO2 saturation

• krg,max : maximum CO2 relative permeability
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End-point Saturations and 
relative permeability Effects 

Swirr

• E declines as Swirr or krg,max increase
• E increases with Sgc
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SgcKrg,max



Example: Storage Efficiency profile
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Strandplain



Example: shelf carbonate
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CO2 plume distribution (1 year)• Cells: 1,209,748 CO2 plume distribution (3 years)



Example: Fluvial Deltaic
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CO2 plume distribution (10 year)
• Channel System 
• Cells: 127,500, kav: 100 md CO2 plume distribution (30 year)CO2 plume distribution (50 year)

Porosity cutoff: 2 % 
# of gridcells: 106,000
Av. permeability: 100 md

Porosity cutoff: 0 % 
# of gridcells: 1,100,000



Normalize baseline efficiencies 
• Normalize for effect of relative permeability and 

end-point saturations

(1) 𝑬𝑬𝒗𝒗 = 𝑬𝑬
�𝑺𝑺 𝒈𝒈

(2) 𝑬𝑬𝒗𝒗 = 𝑬𝑬
�𝑺𝑺 𝒈𝒈
𝒌𝒌𝒓𝒓𝒓𝒓(�𝑺𝑺 𝒈𝒈)

(3) 𝑬𝑬𝒗𝒗 = 𝑬𝑬 (𝟏𝟏−𝑺𝑺𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘)
�𝑺𝑺 𝒈𝒈

(4) 𝑬𝑬𝒗𝒗 = 𝑬𝑬 (𝟏𝟏−𝑺𝑺𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘−𝑺𝑺𝒈𝒈𝒈𝒈)
�𝑺𝑺 𝒈𝒈

(5) 𝑬𝑬𝒗𝒗 = 𝑬𝑬 (𝟏𝟏−�𝑺𝑺 𝒈𝒈)
�𝑺𝑺 𝒈𝒈

(6) 𝑬𝑬𝒗𝒗 = 𝑬𝑬 (𝟏𝟏−𝑺𝑺𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘)
�𝑺𝑺 𝒈𝒈−𝑺𝑺𝒈𝒈𝒈𝒈
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Outcomes
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Depositional Environment Baseline EV (%) % Change (effect of 
geologic structure)ILB formation Stratigraphic Structural

Deltaic Sandstone 23 — 41 23 — 43 0.0 — 4.8
Shelf clastic Sandstone 17 — 41 20 — 52 18 — 26
Shelf carbonate Limestone 9.5 — 26 10 — 28 5.3 — 7.7

Dolomite 7.5 —19 9.0 — 19 0.0 — 20
Fluvial deltaic Sandstone 36 — 52 36 — 51 0.0 — 1.9
Strandplain Sandstone 16 — 32 30 — 43 34 — 88*

Reef Limestone 14 — 53 13 — 56 5.7  — 7.1
Fluvial and alluvial Sandstone 11 — 52 17 — 58 12 — 55

Normalize baseline efficiencies 

*Large structure, low dip angle and thick reservoir

E and Ev increase with size of geologic structure.

Min: Median: Max
0% :  7.4%  :  88%



Storage Potential vs. Efficiency Matrix  

CO2 storage Efficiency Matrix 
Geologic Formation 
Classes

High Potential Medium Potential

Deltaic Shelf Clastic Shelf Carbonate Strandplain Reef Fluvial Deltaic Eolian Fluvial & Alluvial Turbidite

Ranking 2 4 8 5 6 1 — 7 3
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• CO2 storage potential Matrix (NETL, 2010)

CO2 storage potential Matrix (NETL, 2010)
Geologic Formation 
Classes

High Potential Medium Potential

Deltaic Shelf Clastic Shelf Carbonate Strandplain Reef Fluvial Deltaic Eolian Fluvial & Alluvial Turbidite

Ranking 1 2 3 4 5 6 7 8 9

Classification is based on Ev of simulation using stratigraphic geologic models

Note: High E ≠ high storage capacity (potential).



Summary
• Key Findings

• Formations studied exhibit a mixture of depositional 
environments with one having a dominating presence.

• Depositional systems in cratonic and non-cratonic US 
Basins exhibit similar characteristics but differ in scale of 
geologic features.

• Lessons Learned
• Effect of geologic structure on storage efficiency is 

dependent on:
• Size 
• Dip angle
• Reservoir thickness

• Future Plans
• Developed database tool to estimate E from simulation data.
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Midwest Geological
Sequestration Consortium

www.sequestration.org
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http://www.sequestration.org/
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Appendix
 These slides will not be discussed during the presentation, but are 

mandatory
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Organization chart
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Gantt Chart
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Outcomes
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Depositional
Environment

Lithology Baseline E (%) % Change
Stratigraphic Structural

Deltaic Sandstone 9.5 — 18 10 — 20 5.3 — 11
Shelf clastic Sandstone 5.6 — 15 6.6 — 19 18 — 26
Shelf carbonate Limestone 3.1 — 9.0 3.3 — 9.9 6.5 — 10

Dolomite 3.0 — 8.2 3.8 — 7.5 8.0 — 27
Fluvial deltaic Sandstone 13 — 22 15 — 22 0.0 — 15
Strandplain Sandstone 6.1 — 13  11 — 17 31 — 80*

Reef Limestone 4.8 — 19.7 4.7 — 21.3 2.0 — 8.1
Fluvial and alluvial Sandstone 8.0 — 19 9.9 — 22 16 — 24 
Turbidite Fine Sandstone 6.5 — 24 7.0 — 25 4.2 — 7.6

Baseline Storage efficiencies

𝑬𝑬 =
𝑽𝑽𝑪𝑪𝑶𝑶𝟐𝟐
𝑽𝑽𝒑𝒑

*Large structure
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