Boride Based Electrode Materials for MHD Direct Power Extraction

Indrajit Charit* & Krishnan Raja
Dept. of Chemical & Materials Engineering
University of Idaho
Moscow, ID 83844-3024

*E-mail: icharit@uidaho.edu

Outline

- * Introduction and Objectives
- * Research Plan -Tasks
- * Researchers involved
- * Work performed during the last quarter
- * Acknowledgment

Introduction

Courtesy: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/maspec.html

- Full Project Title: TA [A]: Boride Based Electrode Materials with Enhanced Stability under Extreme Conditions for MHD Direct Power Extraction (Grant #: DE-FE0022988)
- Topic Area A: Materials Development to Support Direct Power Extraction
- PI/PD: Indrajit Charit; co-PI: Krishnan Raja
- Funding Opportunity Number: DE-FOA-00001032
- CFDA Number: 81.057; University Coal Research
- Project Duration: July 1, 2014 to June 30, 2017

Introduction

- MHD direct power extraction several challenges
- Operative conditions of MHD ducts very aggressive due to high temperature, high mass flow rate and corrosion
- Electrodes which extract current are subjected to highly arduous conditions.
- Oxide based materials (such as Sr-doped LaCrO₃) as electrodes high electrical resistivity, low thermal conductivity and volatility at high temperatures are issues.
- Development of next generation electrode materials is critical

Objectives

- \bullet Synthesize ternary solid solutions of transition metal borides containing ZrB_2 and HfB_2 by the mechanically induced self-sustaining reaction process.
- Improve high temperature oxidation resistance (up to 2000 °C) of the borides by modifying the boride chemistry.
- Improve the high temperature oxidation resistance of transition metal borides by providing an electrochemical anodic oxide layer
- Evaluate the electrical, mechanical, and thermal stability of the developed materials
- Understand the mechanisms of environmental degradation and phase stability via microstructural characterization
- Develop a unique ultrahigh temperature electrode material that has enhanced stability under the extreme operating conditions of the MHD direct power extraction

Research Plan

- Task 1: Project Management, Planning and Reporting
- Task 2: Synthesis of ZrB₂-HfB₂ Solid Solution
- Task 3: Spark Plasma Sintering of ZrB₂-HfB₂-SiC-LaB₆ composite
- Task 4: Electrochemical Coating for Oxidation Resistance
- Task 5: Characterization of Microstructure and Material Properties
- Task 6: High Temperature Oxidation Study
- Task 7: Hot Corrosion Study of the Composite Material

Work Flowchart

Task 2: Solid Solution Synthesis

- Solid solutions of ZrB₂-HfB₂ will be synthesized using mechano-chemical approach.
- Investigate borides enriched with metal such as $(Zr,Hf)B_{2-x}$ with x varying from 0.1-0.3.
- ΔH_{298} = -79.06 and -77.84 kcal/mol for HfB $_2$ and ZrB $_2$ respectively.*

Task 2: Solid Solution Synthesis (contd.)

Hexagonal crystal structure of ZrB₂ and HfB₂ with a symmetry group P6/mmm (left)

Layered atomic arrangement of the diboride structures illustration (right)

Material	Crystal structure / Space group	a (nm)	c (nm)	Density (g/cm ³)	Melting Point, °C
\mathbf{ZrB}_2	Hexagonal (D _{6h}), P6/mmm	0.317	0.353	6.08	~3246
\mathbf{HfB}_2	$Hexagonal(D_{6h}), P6/mmm$	0.314	0.348	10.5	~3250

Task 2: Solid Solution Synthesis (contd.)

- Mechano-chemical synthesis by highenergy ball milling
 - Zr, Hf, and B in their pure elemental form
 - Argon atmosphere
- Powder handling in a glove box controlled atmosphere
 - Oxygen and moisture below 2 ppm
- Milling variables: Milling time, ball to powder ratio (BPR) and ball size

Vial/Steel Balls

Task 3: Spark Plasma Sintering

- Spark plasma sintering
 - Higher than 95% of the theoretical density
 - Density to be measured by Archimedes method
- SiC and LaB₆ added as sintering aids
 - Increase in the oxidation resistance
 - Aid in thermionic emission control
 - Prepared by mixing the boride solid solutions with:
 - Up to 20 vol% SiC
 - Up to 10 mol% LaB₆
 - Mixing will be carried out by ball milling for different durations

Dr. Sinter 515S machine available at CAES, Idaho Falls

Task 3: Spark Plasma Sintering (contd.)

- Sintering at lower temperatures, shorter dwell times and rapid heating
- Simultaneous uniaxial pressing and passing of pulsed dc
- Heating due to Joule effect
- Local melting, evaporation of oxide layers, surface and volume diffusion enhance the neck formation

Task 4: Oxidation Resistant Coating

Addition of SiC

- Silica-rich borosilicate liquid layer wets crystalline oxide layer of HfO_2 and ZrO_2
- $ZrB_2(c) + 2.5O_2 \rightarrow ZrO_2(c) + B_2O_3(l,g)$ (1)
- $\operatorname{SiC} + 1.5 \, \operatorname{O}_2 \to \operatorname{SiO}_2 (l) + \operatorname{CO}_2 (g)$ (2)
- $2SiO_2(l) \rightarrow 2SiO(g) + O_2$ (3)

• Electrochemical Anodization

- Nanoporous oxide layer onto boride-SiC
- Creates Pillars of ZrO₂/HfO₂ with a liquid roof of borosilicate glass
- Oxygen diffusion barrier created

Task 4: Oxidation Resistant Coating (contd.)

Morphology of the oxide layer formed on Zr-20wt%W alloy by anodization in $0.2M NH_4F + 5 vol\%$ water + ethylene glycol solution at 40 V for 1 h.

Task 5: Characterization

- •Microstructural Characterization
 - HRTEM, SEM, XRD
- •Electrical Characterization
 - EIS
- •Mechanical Characterization
 - Hardness testing
- •Thermal analysis
 - Differential scanning calorimetry
 - Thermal conductivity up to 1700 °C

Leco Vickers microhardness tester

Netzsch STA 409 PC

Analytical Characterization Facilities

Siemens D5000 Diffractometer Zeiss Leo Supra 35 VP SEM

JEOL 2010 HRTEM

Task 6: High Temp. Oxidation Study

- Oxidation kinetics up to 1800 °C
 - SEM, EDAX, XRD, HRTEM
 - Change O₂/Ar ratio of the purge gas
- Oxidation studies higher than 1800 °C
 - Oxy-acetylene torch at 2000 °C and 2200 °C
 - EIS, Mass Change
- Electrical conductivity up to 2200 °C
 - Four point probe method, EIS

Task 7: Hot Corrosion Resistance

- Samples coated with 0.2 to 4.0 mg/cm² Na₂SO₄
- Salt coated samples
 - \bullet Three temperatures between 1600 2200 °C
 - Maximum exposure time of 100 h
- Weight loss/gain will be recorded as a function of salt coating mass, temperature and time.
- Electrical conductivity and electrochemical impedance of tested samples will be measured.
- Microstructural examination will be carried out to understand the corrosion attack mechanism.

Project Milestones

- Procurement of all raw materials (end of Quarter 2)
- Optimization of mechanical milling process (end of Quarter 5)
- Optimized parameters for spark plasma sintering (end of Quarter 6)
- Optimization of anodization parameters (end of Quarter 7)
- Completion of high temperature oxidation studies under steady state conditions (end of Quarter 8)
- Graduation of the MS student (end of Quarter 8)
- Graduation of the PhD student (end of Quarter 12)

Team Member (PI/PD)

Indrajit Charit, Ph.D., P.E.
Associate Professor of Materials
Science & Engineering
Chemical and Materials Engineering
University of Idaho

Research interests:

High Temperature Materials; Mechanical Behavior of Materials; Advanced Materials Processing Techniques

Team Member (Co-PI)

Krishnan S. Raja, PhD Assistant Professor of Materials Science & Engineering Chemical and Materials Engineering University of Idaho

Research Interests:

Energy Conversion Materials; Energy Storage Materials; Electrochemical Synthesis of Nanomaterials

Team Member (Graduate Student)

Steven Sitler

University of Idaho

- BS Chemical Engineering
- MS Materials Science & Engineering
- Pursuing PhD in Materials
 Science & Engineering

Steven Sitler preparing samples in glovebox

Team Member (Graduate Student)

Cody Hill

Humboldt State University.

• BS in Chemistry and Physics

University of Idaho

Pursuing MS in MaterialsScience & Engineering

Cody Hill analyzing samples on SEM

Team Member (Undergraduate Student)

Adam Grebil

University of Idaho

Pursuing BS in Materials Science & Engineering

Adam Grebil checking the fit of a SPEX milling vial

As Received HfB₂ Powder

Hafnium Di-Boride (99.5% purity);
-325 mesh size

SEM Analysis:

As Received ZrB_2 Powder

Zirconium Di-Boride Powder, 99.5% purity; -325 mesh size

SEM Analysis:

As Received LaB_6 Powder

Lanthanum Hexaboride (99.5% purity); -325 mesh size

SEM Analysis:

As Received SiC Powder

Silicon Carbide (99.5% purity), ~7 Micron Size

Boride Solid Solution Synthesis

HfB₂ and ZrB₂ in 1:1 molar ratio was milled in a SS vial (20:1 ball to powder ratio) in a SPEX 8000M Mixer/Mill for (a) 5 min and (b) 60 min

Hf-Zr Boride Synthesis: XRD analysis

X-ray powder diffraction patterns of the products after milling a (1:1) mixture of $HfB_2 + ZrB_2$, powder to ball ratio (1:20): (A) 5 minutes mill time, (B) 60 minutes mill time, (C) 180 minutes mill time, (D) 270 minutes mill time, (\blacksquare) ZrB_2 , (\blacksquare) HfB_2 .

Acknowledgment

Grant Number: DE-FE0022988

University Coal Research, National Energy Technology Laboratory

Project Manager: Jason Hissam

Award Administrator: Amanda Lopez

Kickoff Meeting Coordinator: Jessica Mullen

Thank You!

Questions?