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I - Goal and Objectives 
Primary goal: Develop CNT-BN composite structures in which VA-CNTs are 

embedded in BN matrices for hot electrode applications in 
magnetohydrodynamics (MHD) power systems. 

Objectives:  
1. Super growth of VA-CNT carpets 

2. Fabrication of CNT-BN composite structures 

3. Stability and resistance studies of the CNT-BN composite structures 

4. Thermionic emissions from the CNT-BN composite structures 
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II - Background and Motivations 

How to address? 

New Energy Sources High Energy Efficiency 
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II - Background and Motivations 

Electricity Generation Efficiency 
Method Efficiency (%) Ref. 
Nuclear 33 – 36 Efficiency in Electricity Generation, EURELECTRIC 

“Preservation of Resources” Working Group’s  
“Upstream” Sub-Group in collaboration with VGB, 2003 Coal 39 - 47 

Natural gas < 39 

http://crf.sandia.gov/index.php/coal-use-and-carbon-
capture-technologies/#.VBaDbvldV8E  

http://www.eia.gov/tools/faqs/faq.cfm?id=427&t=3  

Coal 
39% 

Natural Gas 
27% 

Nuclear 
19% 

Hydroelectric 7% 

Other renewable 6% 
Liquid petroleum 2% 

U.S. Electricity Generation (2013) 
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II - Background and Motivations 

1) Only working fluid is circulated without moving mechanical parts; 
2) The ability to reach full power level almost directly. 
3) Lower infrastructure cost than conventional generators. 
4) A very high efficiency (60% for a closed cycle MHD). 
http://en.wikipedia.org/wiki/Magnetohydrodynamic_generator#Generator_efficiency 
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II - Background and Motivations 
Material Challenges for a MHD Generator 

Requirement Remarks 
Electrical conductivity (σ) σ > 1 S/m, flux ≈ 1 amp/cm2 

Thermal conductivity (k) High heat flux from the combustion fluids at 2400 K 

Thermal stability Melting point (Tm) above 2400 K 

Oxidation resistance 
Resistant to an oxygen partial pressure about 10-2 atm at 

2400 K 

Corrosion resistance Potassium seeds and aluminosilicate slags 

Erosion resistance High velocity hot gases and particulates 

Thermionic emission 
The anode and cathode should be good acceptor and 

emitters, respectively. 
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III - Proposed Solution and Activities 

Tasks Milestone Completion 
Date 

1.Project Management and 
Planning 

Complete of the proposed project within the 3-year 
period. 

08/31/2017 

2.Super Growth of Vertically 
Aligned CNT Carpets 

Achieve the growth of VA-CNT carpets on Cu 
substrates with CNT lengths up to 1 cm. 

08/31/2015 

3.Fabrication of CNT-BN 
Composite Structures 

Achieve uniform and dense growth of BN matrices 
wrapping VA-CNTs. 

02/29/2016 

4.Stability and Resistance 
studies of the CNT-BN 
Composite Structures 

Determine the stability and resistance of the CNT-
BN composite structures  

08/31/2016 

Determine the electrical and thermal conductivities 
of the CNT-BN composite structures. 

02/28/2017 

5.Thermionic emissions from 
the CNT-BN composite 
structures 

Determine the thermionic emission performance of 
the CNT-BN composite structures. 

08/31/2017 

Project tasks, milestones, and planned completion dates 
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III - Proposed Solution and Activities 
Timelines and corresponding milestones of the project 
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IV - Deliverables and Spending Plan 

Type Deliverables 
Method 1. Super-growth of ultralong VA-CNT  carpets 

2. Fabrication of CNT-BN composite 
3. Modulated photothermal radiometric method for measuring 

the thermal conductivity of the CNT-BN composite 
4. Thermionic emission current method for measuring the 

thermionic emission of the CNT-BN composite 
Equipment 

setup 
1. Water-vapor-assisted CVD system 
2. Plasma-enhanced CVD system 
3. Modulated photothermal radiometric  system 
4. Thermionic emission current measurement system 

Reports  Quarterly reports, annual reports, final report and other reports 
required by DOE 

Presentations Conference and review meeting presentations 
Journal papers Journal and conference proceeding articles 
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V - Student Training 
Name  Qiming Zou Degree Ph.D. 

Dept. Electrical Engineering Univ.  University of Nebraska - Lincoln 

Goal Pursuing a Ph.D. degree in the field of Electrical Engineering and developing 
necessary knowledge, expertise, leadership, teaching skills, and mentorship 
towards an academic profession.  

Objectives 1. Grasping necessary knowledge in the field of electrical engineering; 
2. Grasping necessary experimental and simulation techniques required in this 

project; 
3. Establishing teaching skills by taking two semester teaching assistants and 

participating in outreach programs; 
4. Developing leadership and mentorship by working with undergraduate assistant, 

Joseph Hartwig; 
5. Publishing at least 3 articles in peer-reviewed journals within related fields; 
6. Developing essential communication skills;  
7. Attending academic conferences within related fields and establishing 

networking capability; and 
8. Independent and critical thinking by developing a complete research plan in his 

comprehensive exam. 
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V - Student Training 
Name  Joseph Hartwig Degree B.Sc. 

Dept. Electrical Engineering Univ.  University of Nebraska - Lincoln 

Goal Completing a B.Sc. program in the field of Electrical Engineering and obtaining 
essential knowledge, skills, and industrial experience for pursuing a related 
profession. 

Objectives 1. Grasping necessary knowledge in the field of electrical engineering; 
2. Grasping necessary experimental and simulation techniques required in this 

project; 
3. Establishing essential industrial experience by conducting industrial intership; 
4. Developing effective communication skills; and 
5. Developing collaborative and teamwork skills. 
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VI - Preliminary Results 

1. Growing CNTs with alignment control 

2. Optically controlled in situ growth and parallel integration of CNTs 

3. Direct formation of graphene on dielectric surfaces via a solid-state process 

4. Laser direct writing of graphene patterns 

5. Resonant vibrational excitation in diamond growth control 

6. Low-temperature synthesis of GaN thin films 
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VI - Preliminary Results 

1. Growing CNTs with alignment control 

Ref.: Applied Physics Letters, 2009, 95(14), 143117. 
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VI - Preliminary Results 

1. Growing CNTs with alignment control 

Vertically aligned CNT patterns 
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VI - Preliminary Results 

2. Optically controlled in situ growth and parallel integration of CNTs 

Top view Side view 

Ref.: Nanotechnology. 2010, 21, 315601 
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VI - Preliminary Results 

2. Optically controlled in situ growth and parallel integration of CNTs 

Ref.: Nanotechnology. 2010, 21, 315601 
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VI - Preliminary Results 

2. Optically controlled in situ growth and parallel integration of CNTs 

Ref.: Nanotechnology. 2010, 21, 315601 
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VI - Preliminary Results 

3. Direct formation of graphene on dielectric surfaces via a solid-state process 

Ref.: Advanced Materials. 2013, 25, 630-634. 
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VI - Preliminary Results 

Ref.: Advanced Materials. 2013, 25, 630-634. 

3. Direct formation of graphene on dielectric surfaces via a solid-state process 
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VI - Preliminary Results 

Ni/C/quartz Ni/quartz 

Before RTP a 

Sample A: Ni/quartz  

Sample B: Ni/C/quartz 

A B 

After RTP 

Nickel 
remained 

Nickel 
evaporated 

Graphene/
quartz 

b 

Ni/quartz 

A B 

RTP 
(2 min) 

Ref.: Advanced Materials. 2013, 25, 630-634. 
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VI - Preliminary Results 
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3. Direct formation of graphene on dielectric surfaces via a solid-state process 
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VI - Preliminary Results 
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3. Direct formation of graphene on dielectric surfaces via a solid-state process 
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VI - Preliminary Results 

4. Laser direct writing of graphene patterns 
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Ref.: Scientific Reports. 2014, 4, 4892 



This image cannot currently be displayed.
This image cannot currently be displayed.

VI - Preliminary Results 

4. Laser direct writing of graphene patterns 

10 µm 

10 µm 

 

 

 

 

  

Text pattern 

10 µm 

Spiral pattern 

Array of line pattern 

20 µm 
1 µm 

800 nm 

D 

G 2D 

1350 1800 2250 2700 
Raman Shift (cm-1) 

SEM micrograph 

Raman NAND circuit pattern 

10 nm 

Bi-layer 

TEM micrograph 

300 400 500 600 700 800
86

88

90

92

94

96

98

100

 

 

Op
tic

al 
Tr

an
sm

itt
an

ce
 (%

)

Wavelength (nm)

94.3% 

Optical Spectrum 

a 

b 

c 

d 

e 

f h 

g 
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VI - Preliminary Results 

Ref.: Scientific Reports. 2014, 4, 4892 
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4. Laser direct writing of graphene patterns 
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VI - Preliminary Results 

5. Resonant vibrational excitation in diamond growth control 
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VI - Preliminary Results 

5. Resonant vibrational excitation in diamond growth control 
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VI - Preliminary Results 

5. Resonant vibrational excitation in diamond growth control 
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VI - Preliminary Results 

5. Resonant vibrational excitation in diamond growth control 
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VI - Preliminary Results 

6. Low-temperature synthesis of GaN thin films 
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Thank you! 
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