

Estimating Current Densities in Equilibrium Magnetohydrodynamic Generator Channels

V. A. Bokil[†], N. L. Gibson[†], D. A. McGregor^{†‡}, C. Rigel Woodside[‡]

Magnetohydrodynamic Power Generation

- ► Magnetohydrodynamic Generators (MHDG) offer thermodynamic efficiency improvements as a topping cycle to traditional steam cycle power generation.
- ► Due to thermal boundary layer effects, a conductivity gap forms in a thin layer near electrodes
- ► Current must cross this gap and does so in a dense "arc".
- Modeling and detection of these arcs is necessary for controlling the phenomenon.

Current Reconstruction from External Magnetic Fields

Reconstruction of currents from induced fields has many applications.

- Diagnostics for batteries and fuel cells
- Explosive shock detection relies on passing explosive products through a strong magnetic field
- Arc detection in vacuum arc remelters

Simulation Based Estimation

Current reconstruction is typically done by employing the Biot-Savart Law

- ► This relies on the solution of *integral equations*, which typically involves special assumptions of geometry or material parameters
- ▶ Instead, we solve a differential equations model
- ► Requires the minimization of a discrepancy function using Newton's method to explore parameter space
- ▶ Requires no special assumptions of geometry or material

Static Maxwell System

- Assume: generator is in equilibrium
- ► Variables: **e** electric field, **b** magnetic flux density
- ▶ Data: ρ_c charge density, **j** current density.

$$\mathbf{e} - \nabla \psi = \mathbf{0}$$

$$\nabla \cdot \epsilon \mathbf{e} = \rho_c$$

$$\nabla \times \mu^{-1} \nabla \times \mathbf{a} + \nabla \lambda = \mathbf{j}$$

$$\nabla \cdot \mathbf{a} = \mathbf{0}$$

$$\mathbf{j} = \sigma(\mathbf{e} + \mathbf{u} \times \mathbf{b}) + \beta |\mathbf{b}|^{-1} \mathbf{j} \times \mathbf{b}$$

Faraday's Law
Gauss' Law
Ampère's Law
Coulomb Gauge
Ohm's Law

Mimetic Finite Differences

- ► Mimetic Finite Differences (MFD) generalize Yee-Scheme type staggered differences to general meshes.
- ▶ It is amenable to Lagrangian frame discretizations and complex domain geometry.
- ► MFD Discretizations obey classical duality relationships on appropriate spaces.

$$\int_{G} \nabla \phi \cdot \mathbf{u} = -\int_{G} \phi \nabla \cdot \mathbf{u} \qquad \phi \in H_{0}^{1}, \mathbf{u} \in \mathbf{H}^{\nabla}$$

$$\int_{G} \nabla \times \mathbf{u} \cdot \mathbf{v} = \int_{G} \mathbf{u} \cdot \nabla \times \mathbf{v} \qquad \mathbf{u}, \mathbf{v} \in \mathbf{H}_{0}^{\nabla}$$

► The MFD discretizes the exterior calculus and preserves important range conditions:

$$\mathsf{Range}(\nabla) = \mathsf{Kernel}(\nabla \times) \qquad \mathsf{Range}(\nabla \times) = \mathsf{Kernel}(\nabla \cdot)$$

Discretization Details

We approach the magnetostatic problem using a method described in [3].

- ▶ Mesh nodes \mathcal{N} , mesh edges \mathcal{E} , mesh faces \mathcal{F} must be mapped
- \blacktriangleright Magnetic potential, current density, and electric field is discretized on $\mathcal E$

$$\mathbf{a}_h = \left(\frac{1}{|e_j|} \int_{e_j} \mathbf{a} : e_j \in \mathcal{E} \right)$$

 \mathbf{e}_h , \mathbf{j}_h is defined similarly

lacktriangleright Magnetic pressure and electrical potential is discretized on ${\cal N}$

$$\lambda_h = (\lambda(\mathbf{x}_j) : \mathbf{x}_j \in \mathcal{N})$$

▶ We construct operators $\mathcal{GRAD}_h : \mathcal{N} \to \mathcal{E}$ and $\mathcal{CURL}_h : \mathcal{E} \to \mathcal{F}$ defined in terms of stokes theorem.

$$\mathcal{GRAD}_h f_h(e_j) = rac{f(\mathbf{x}_i) - f(\mathbf{x}_{i+1})}{|e_j|}, \mathbf{x}_i, \mathbf{x}_{i+1} \in e_j$$
 $\mathcal{CURL}_h \mathbf{u}_h(f_j) = rac{1}{|f_j|} \sum_{e_i \in f_j} \sigma_{ij} |e_j| \mathbf{u}_h(e_j), \ \sigma = \pm 1$

- ▶ We construct quadrature matrices $\mathbb{Q}_{\mathcal{N}}$, $\mathbb{Q}_{\mathcal{E}}$ and $\mathbb{Q}_{\mathcal{F}}$ which produce an inner product using nodes, edges, and faces respectively. These matrices discretize the L^2 inner product.
- ► Discrete static Maxwell system is defined as follows

$$\begin{bmatrix} \mathbb{Q}_{\mathcal{E}} & -\mathbb{Q}_{\mathcal{E}}\mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h} \\ -\mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h}\mathbb{Q}_{\mathcal{E}} & \mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h}^{\mathsf{T}}\mathbb{Q}_{\mathcal{E}}\sigma_{h}[\mathbf{u}_{\times}]\mathcal{C}\mathcal{U}\mathcal{R}\mathcal{L}_{h} \\ -\sigma_{h}\mathcal{Q}_{\mathcal{E}} & \mathcal{C}\mathcal{U}\mathcal{R}\mathcal{L}_{h}^{\mathsf{T}}\mathbb{Q}_{\mathcal{N}}\mathcal{C}\mathcal{U}\mathcal{R}\mathcal{L} - \sigma_{h}[\mathbf{u}_{\times}]\mathbb{Q}_{\mathcal{N}}\mathcal{C}\mathcal{U}\mathcal{R}\mathcal{L}_{h} & \mathbb{Q}_{\mathcal{E}}\mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h} \\ \mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h}^{\mathsf{T}}\mathbb{Q}_{\mathcal{E}} & \mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h}^{\mathsf{T}} & \mathcal{G}\mathcal{R}\mathcal{A}\mathcal{D}_{h}^{\mathsf{T}} & \mathcal{G}\mathcal{A}\mathcal{D}_{h}^{\mathsf{T}$$

Sensitivity Experiments

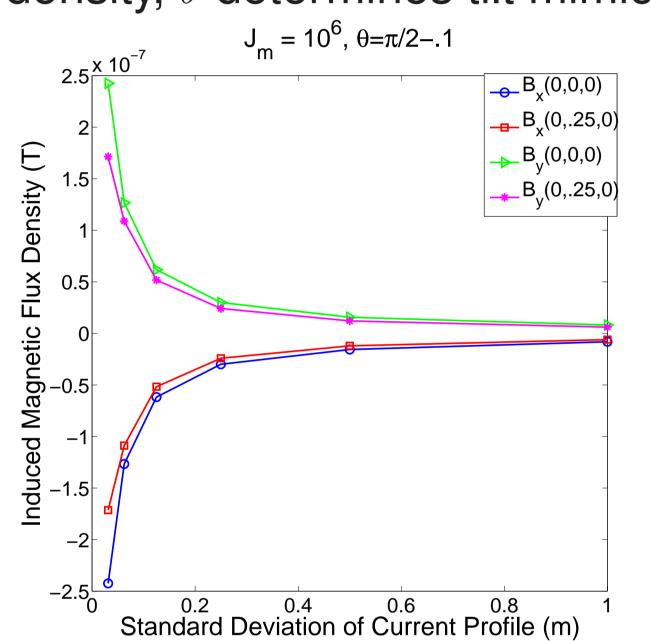
We explore the response of a magnetic field to features we expect to occur in MHDG by computing sensitivities to

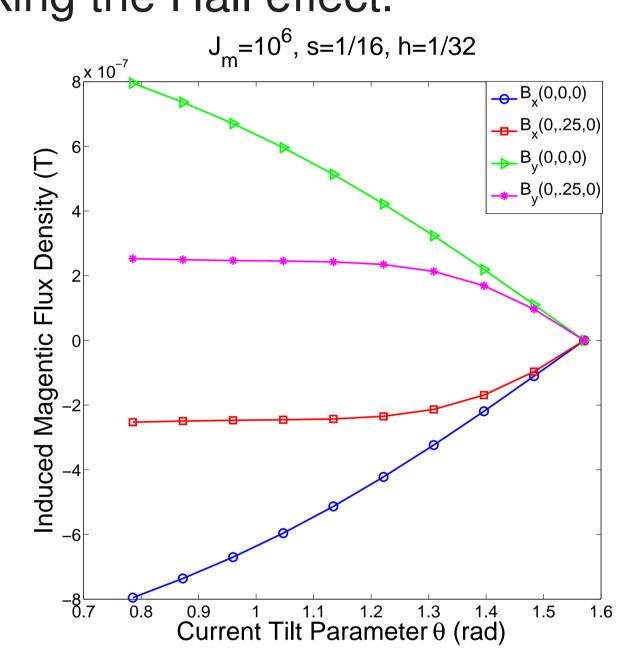
- ▶ Variation in current density from diffuse to concentrated.
- ► Variation in the tilt (angle) of the current.

We will exclude electrostatic effects and instead consider a current density profile which mimics MHD features.

$$\mathbf{j}(x,y,z) = \frac{j_m}{\sqrt{2\pi s^2}} \mathbf{v} \exp\left(\frac{1}{2s^2} \left| \left(\mathbb{I} - \mathbf{v} \mathbf{v}^T \right) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right|^2 \right), \mathbf{v} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix}$$

The parameter space is determined as followed: j_m which determines the total current, s which determines current density, θ determines tilt mimicking the Hall effect.





References

[1] P. Davidson.

An Introduction to Magnetohydrodynamics. Cambridge University Press, 2001.

[2] K. Hauer and R. Potthast.

Magnetic tomography for fuel cells- current status and problems. J.Phys.:Conf. Ser. 73 012008, pages 1–17, 2008.

[3] K. Lipnikov, G. Manzini, F. Brezzi, and A. Buff.

The mimetic finite difference method for the 3d magnetostatic field problems on polyhedral meshes.

J. Comp. Phys., 230:305-328, 2011.

[4] Richard Rosa.

Magnetohydrodynamic energy conversion. McGraw-Hill, 1968.

Acknowledgments

This work was supported by the DOE NETL Grant RES1100426 / 015.