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Magnetohydrodynamic Power Generation

I Magnetohydrodynamic Generators (MHDG) offer
thermodynamic efficiency improvements as a topping cycle
to traditional steam cycle power generation.

I Due to thermal boundary layer effects, a conductivity gap
forms in a thin layer near electrodes

I Current must cross this gap and does so in a dense “arc”.
I Modeling and detection of these arcs is necessary for

controlling the phenomenon.

Current Reconstruction from External Magnetic Fields

Reconstruction of currents from induced fields has
many applications.

I Diagnostics for batteries and fuel cells
I Explosive shock detection relies on passing explosive

products through a strong magnetic field
I Arc detection in vacuum arc remelters

Simulation Based Estimation

Current reconstruction is typically done by employing
the Biot-Savart Law

I This relies on the solution of integral equations, which
typically involves special assumptions of geometry or
material parameters

I Instead, we solve a differential equations model
I Requires the minimization of a discrepancy function using

Newton’s method to explore parameter space
I Requires no special assumptions of geometry or material

Static Maxwell System

I Assume: generator is in equilibrium
I Variables: e electric field, b magnetic flux density
I Data: ρc charge density, j current density.

e−∇ψ = 0 Faraday’s Law
∇ · εe = ρc Gauss’ Law
∇× µ−1∇× a +∇λ = j Ampère’s Law
∇ · a = 0 Coulomb Gauge
j = σ(e + u× b) + β|b|−1j× b Ohm’s Law

Mimetic Finite Differences

I Mimetic Finite Differences (MFD) generalize Yee-Scheme
type staggered differences to general meshes.

I It is amenable to Lagrangian frame discretizations and
complex domain geometry.

I MFD Discretizations obey classical duality relationships on
appropriate spaces.∫

G
∇φ · u = −

∫
G
φ∇ · u φ ∈ H1

0 ,u ∈ H∇·∫
G
∇× u · v =

∫
G

u · ∇ × v u,v ∈ H∇×0

I The MFD discretizes the exterior calculus and preserves
important range conditions:

Range(∇) = Kernel(∇×) Range(∇×) = Kernel(∇·)

Discretization Details

We approach the magnetostatic problem using a method
described in [3].

I Mesh nodes N , mesh edges E , mesh faces F must be
mapped

I Magnetic potential, current density, and electric field is
discretized on E

ah =

(
1
|ej|

∫
ej

a : ej ∈ E

)
eh, jh is defined similarly

I Magnetic pressure and electrical potential is discretized on N
λh =

(
λ(xj) : xj ∈ N

)
I We construct operators GRADh : N → E and
CURLh : E → F defined in terms of stokes theorem.

GRADh fh(ej) =
f (xi)− f (xi+1)

|ej|
,xi,xi+1 ∈ ej

CURLh uh(fj) =
1
|fj|
∑
ei∈fj

σij|ej|uh(ej), σ = ±1

I We construct quadrature matrices QN , QE and QF which
produce an inner product using nodes, edges, and faces
respectively. These matrices discretize the L2 inner product.

I Discrete static Maxwell system is defined as follows
QE −QEGRADh

−GRADhQE GRADT
h QEσh[u×]CURLh

−σhQE CURLT
h QNCURL − σh[u×]QNCURLh QEGRADh

GRADT
h QE




eh

ψh

ah

λh

 =


0
0

jHall

0



Sensitivity Experiments

We explore the response of a magnetic field to features we
expect to occur in MHDG by computing sensitivities to

I Variation in current density from diffuse to concentrated.
I Variation in the tilt (angle) of the current.
We will exclude electrostatic effects and instead consider a
current density profile which mimics MHD features.

j(x , y , z) =
jm√
2πs2

v exp
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2s2
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2
 , v =

cos θ
sin θ

0


The parameter space is determined as followed: jm which
determines the total current, s which determines current
density, θ determines tilt mimicking the Hall effect.
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