Retrospective and Prospective Aspects of MHD Power Generation

Rigel Woodside, PhD
Thermal Sciences Division, NETL ORD
NETL/DOE MHD Workshop 10-01-2014
Rigel.Woodside@netl.doe.gov
Outline of Talk

• Important Aspects 101
 – Fundamentals
 – Motivations
 – Example Problem

• Perspective
 – Past
 – Future

Note: Some images have been removed due to copyrights
What is Magnetohydrodynamics (MHD)?

MHD describes the interactions of a magnetic field and an electrically conductive fluid

• In Nature
 – geomagnetic dynamo
 – solar “wind” and solar “flares”

• In Engineering
 – Materials Processing
 – Propulsion/Pumping
 – Power Generation
 • Pulsed
 • Steady
 – “Open cycle” MHD -> single pass; eg. combustion products
 – “Closed cycle” MHD -> loop; e.g. Engineered gasses
 – “Liquid metal” MHD -> loop; e.g. 2-phase gas/metal

Lorentz Force

\[F = q(E + v \times B) \]
Engineering Aspects pt. 1

Two important complications to extracting power:

1. **Load Factor (K)** - relation of load electrical resistance (R_L), to the resistance in the generator (R_g)

 \[K \equiv \frac{R_L}{(R_L + R_g)} \]

 Fluid has to “push” through generator against a $j \times B$ force, & produces an electric power output of:

 \[P_o = K(1 - K)\sigma u^2 B^2 \]

 Where σ is fluid electrical conductivity, j is generated electric current density & P_o is electric power density output.

2. **Hall Parameter, β** - ratio between electron gyro-frequency & electron-particle collision frequency

 \[\beta = \mu_e B = \omega \tau \]

 Usually (gas MHD) $0.1 < \beta < 10$

 β “tilts” the field and reduces current density output in above simple linear Faraday generator to:

 \[j = \frac{\sigma}{1 + \beta^2} (uB - E) \]

 Convention: “Faraday” -> y-direction current & voltage
 “Hall” -> x-direction current & voltage

** Due to β, this is for ideal segmented faraday loaded generator (next slide)
Engineering Aspects pt. 2

Loading Strategy

Segmented Faraday Generator. The ideal segmented Faraday generator has an infinite number of pairs & thus no Hall current.

Hall Generator. This loading minimizes Faraday voltage & maximizes Hall current for extraction.

Other Variations: Flow Geometry & Loading

Others of Interest:
- Annular Generator
- Spiral Generator

Notes:
- Segmented Faraday Ideal
- Simple continuous Faraday (schematic on last side) & Hall generator approaches ideal power output with low and high hall parameter conditions respectively.

- Linear Faraday w/ “diagonal” electrode pairs at angle to net electric field; thus far less load resistors possible
- Disc flow geometry so Faraday current closes “on itself” (Hall w/ only 2 electrodes)
Combustion Temperatures & Limitations

3 atm. combustion, $\phi = 1$

A. methane-air combust
B. methane-air combust w/ 2200 [K] air pre-heat*
C. methane-enriched air (36% O2 by vol.) combust with 922K oxidant pre-heat*
D. methane-oxygen combust
E. methane-oxygen combust w/ 922K oxidant pre-heat

F. Open cycle MHD
G. Closed cycle MHD
H. H-class H2 Gas Turbine
I. A-USC Steam Turbine

* Representative of “legacy” Open cycle MHD conditions envisioned
Advantages of MHD Power Generation

MHD Power Advantages
1. Improved C.C. Thermal Efficiency
2. Pulsed Power & High Power Density
3. No moving parts

MHD “topping” cycle including the oxygen production

Air separation unit

MHD Power Unit

Topping Work Output \(W_T \)

Bottoming Work Output \(W_B \)

High efficiency steam boiler

~ 45% efficient today best cases

Enthalpy into the “top” = mass flow of fuel x HHV = \(Q \)
Work from the top: \(W_T = \eta_T \cdot Q \)

Enthalpy into the “bottom” = \(Q - W_T = Q \cdot (1 - \eta_T) \)
Work from the bottom: \(W_B = \eta_B \) (Enthalpy into the bottom) = \(Q \cdot (\eta_B - \eta_T \cdot \eta_B) \)

Combined cycle efficiency: \(\frac{W_T + W_B}{Q} = \eta_T + \eta_B - \eta_T \cdot \eta_B \)

Example
\[\eta_T = 0.15 \ (15\%) \]
\[\eta_B = 0.45 \ (45\%) \]

Combined Efficiency:
\[0.15 + 0.45 - (0.15)(0.45) = 0.53 \ (53\%) \]
New Motivations: USDOE FE

Exhibit 3-117 Increases in Cost of Electricity Over Non-Capture Reference Case

<table>
<thead>
<tr>
<th>Study Case</th>
<th>First Year Cost of Electricity ($/MWh)</th>
<th>Increase in COE (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Capture Reference, Air-fired SC w/o CCS</td>
<td>31.68, 7.97, 5.03, 14.22, 0.00</td>
<td>58.90</td>
</tr>
<tr>
<td>Current OF Technology, O(_2)-fired SC w/ASU & CCS</td>
<td>53.72, 11.81, 6.47, 19.08, 5.83</td>
<td>91.07 (54.6)</td>
</tr>
<tr>
<td>Case 1, O(_2)-fired SC w/Boiler Adv. Membrane & CCS</td>
<td>52.35, 11.53, 5.99, 17.32, 5.60</td>
<td>87.19 (48.0)</td>
</tr>
<tr>
<td>Case 1A, O(_2)-fired SC w/NG Adv. Membrane & CCS</td>
<td>50.45, 11.23, 5.63, 23.81, 5.25</td>
<td>91.12 (54.7)</td>
</tr>
<tr>
<td>Case 3, O(_2)-fired USC w/ASU & CCS</td>
<td>54.15, 11.81, 6.10, 17.25, 5.58</td>
<td>89.31 (51.6)</td>
</tr>
<tr>
<td>Case 4, O(_2)-fired SC w/ASU & Co-Sequestration</td>
<td>48.85, 10.79, 4.78, 17.60, 5.67</td>
<td>82.02 (39.3)</td>
</tr>
<tr>
<td>Case 5, O(_2)-fired SC w/ASU, Wet Recycle & CCS</td>
<td>53.66, 11.80, 6.47, 19.11, 5.91</td>
<td>91.03 (54.5)</td>
</tr>
<tr>
<td>Case 6 O(_2)-fired SC w/ASU & Shock Compression</td>
<td>52.59, 11.60, 6.34, 18.81, 5.87</td>
<td>89.34 (51.7)</td>
</tr>
<tr>
<td>Case 7, O(_2)-fired SC w/ASU, Adv. Boiler & CCS</td>
<td>53.13, 11.65, 6.32, 18.87, 5.89</td>
<td>89.96 (52.7)</td>
</tr>
<tr>
<td>Cumulative Technology Case</td>
<td>48.52, 10.66, 4.30, 14.68, 5.28</td>
<td>78.15 (32.7)</td>
</tr>
</tbody>
</table>

\(^a\)Relative to non-capture reference case

Strategies for Improvement:
1. Decrease ASU cost
2. Use oxygen to enable power generation -> MHD

Note: Oxygen established benefits for rockets & melting
Example Problem: Conductivity/Gas Dynamics

- **Open-Cycle MHD scenario**
- **Consider oxy-methane combustion**
 - \((\text{CH}_4 + 2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{CO}_2 \text{ at } \phi = 1)\)
 - Utilize potassium carbonate as seed material \((\text{K}_2\text{CO}_3)\)...K Ionization \(\sim 4.3 \text{ eV}\)
- **Thermal Equilibrium**
 - Utilize NASA’s Chemical Equilibrium Analysis (CEA) code for chemistry, ionization, and gas dynamics
- **Gas Electrical Conductivity Relation (for comparative purpose):**
 - \(T_e = T_g\); Electrons all at mean speed; use \(Q_k = f(T_e)\); \(Q_{\text{H}_2\text{O}}\) from Spencer (1976).

\[
\sigma = \frac{n_e e^2}{m_e c_e \sum_k n_k Q_k} \quad c_e = \langle v \rangle = \sqrt{\frac{8 k_b T}{\pi m_e}}
\]

- Neglects ion-electron collisions
- Scalar (no magnet effect)

\(n_e\) = electron number density \([#/\text{m}^3]\)
\(e\) = electron charge = \(1.60 \times 10^{-19}\) [C]
\(m_e\) = electron mass = \(9.11 \times 10^{-31}\) [kg]
\(c_e\) = random thermal electron velocity [m/s] (estimated by the Maxwell-Boltzmann mean speed, \(\langle v \rangle\))
\(n_k\) = neutral species number density \([#/\text{m}^3]\)
\(Q_k\) = neutral species momentum transfer collisional cross section \([\text{m}^2]\)
\(k_b\) = Boltzmann constant = \(1.38 \times 10^{-23}\) [J/K]
\(T\) = electron temperature [K]
Seeding: Getting Conductive Flow

1 atm. combustion, \(\phi = 1 \); Introduce K\(_2\)CO\(_3\) seed as powder or dissolved in water solution

Notes:

- Cond. \(\sim 10^4 \) greater with seed than without
- Adding seed cools gasses
- Optimal seed amount different for powder vs aqueous
- H\(_2\)O collisions dominate
- OH radicals: \(\sim 10\% \) reduction in e-
Combustion Product Chemistry

1 atm. combustion, $\phi = 1$, 5.4 mass % K (powder K_2CO_3 added)

Notes:

- Dissociation important
- Very non-linear cond.
- Very little K^+
- Re-association maintains T
- At 2100K cond. $\sim 10^2$ less than at $\sim 3000K$
- Higher Temp means New oxy $\sim 3x$ cond. from 1980s OCMHD
Effects of Combustion Pressure

$\phi = 1, \text{5.4 mass } \% \text{ K (powder K}_2\text{CO}_3 \text{ added)}$

Notes:

- More Temp. & e- at higher P
- Lower cond. at higher P due to collisions
- Optimal seed amount not very sensitive to P
- OH radicals: more important at higher P
Effect of Supersonic Expansion (get velocity)

\[\phi = 1, \text{5.4 mass } \% \text{ K (powder K}_2\text{CO}_3 \text{ added); Relative Electric } P_{\text{MHD}} = \sigma u^2/4 \]

Notes:

- Expansion cools gases
- Expansion reduces pressure
- Pressure is sub-atm. in channel at peak MHD power density
- Lower cond. but more power density
- Lower P still better but gap between Ps closes
Seed Recovery

1 atm. combustion, $\phi = 1$, 5.4 mass % K (powder K$_2$CO$_3$ added)

No sulfur in system:

With sulfur in system (example):

Side Note: Seed aerosols/particles form at T_s where gas turbines operate (an issue for turbine integration)
MHD Power 101 Summary

\[P \propto \sigma u^2 B^2 \]

where \(B \) is applied magnetic field
\(\sigma \) is gas-plasma conductivity
\(u \) is gas-plasma velocity

- The terms are not quite independent
 - We noted relation of conductivity and velocity
 - Lower pressure better for MHD
 - Supersonic gives highest power density (molecular gasses)
 - Higher \(B \) means higher Hall parameter
 - \(uxB \) effects materials issues (higher current density -> arcing)
 - \(B \) is expensive, cost driver for electric power gen.
 - Electromagnet, superconductor, permanent magnet
 - Weight likely means different motivation for land vs air
Past and Future Perspectives
1940-1960: MHD Power Tech. Discovery

• Karlovitz and Halasz
 – U.S. patent 2,210,918, 1940.
 – Non-seeded annular hall generator
 • Did not work very well
 – Alkali seed use began

• Rosa AVCO mark 1 generator (1960)
 – successful
1960s-1970s: Technology Establishment

- International Research begins
 - Soviets build U-02 test facility
- U.S. Patent 3,294,989 describes a Liquid Metal MHD concept
- Rosa book written (1968)
- Aerospace and nuclear interests as well.
- Pulsed Power Interest

AVCO Mark 6 U-25 channel R
(Source: Petrick/Shumyatski book, 1978)
1970s ERDA/DOE: Demos & Studies

- AEDC HPDE (record open cycle enthalpy extraction experiment)
 - Magnet exploded during test
- CCMHD vs OCMHD vs LMMHD
- Decisions ~1980 set stage for USDOE work thereafter.
 - Systems studies shows open cycle MHD to be most promising

Key analysis assumptions made in the late 1970s have turned out wrong.

1. NG prices would rule out substantial use of that fuel in the future
2. High sulfur coal would continue to dominate
1980-1993 USDOE: Near Commercialization

• Large demos
 – Industry cost share
• Enhanced air was near term—aggressive air cooling later
• Performance to date:
1980s-2000s: Japanese Closed Cycle Work

- Closed Loop Experimental Facility:

- Good summary and images here:

http://vips.es.titech.ac.jp/pdf/090325-meeting/Okuno.pdf
Issues Summary (past U.S. Program)

The bad* (Direct-Fired Coal Open Cycle MHD):
1) Slag retention problems in Combustor
2) Channel Operation Problems
3) Concerns about the cost-effectiveness of seed regeneration process
4) Uncertainties in fully integrating MHD systems
5) Uncertainties in scaling up mhd systems

The Good: +Concept proven (Power generation)
+Enabled other advances

<table>
<thead>
<tr>
<th>Legacy MHD program</th>
<th>Today</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CO$_2$ capture</td>
<td>CO$_2$ Capture</td>
<td>High Temperature Oxy-fuel combustion for CO$_2$ capture enables MHD.</td>
</tr>
<tr>
<td>Large demos</td>
<td>simulation & bench scale experiments</td>
<td>Validated models for different generator concepts & conditions, not demos.</td>
</tr>
<tr>
<td>Inefficient oxygen production</td>
<td>Efficient oxygen production</td>
<td>ASU power requirements have dropped 40% since 1990.</td>
</tr>
<tr>
<td>SOx and NOx control</td>
<td>Capture GPU</td>
<td>No emissions! Use oxy-fuel gas processing unit (GPU).</td>
</tr>
<tr>
<td>Low Temperature</td>
<td>High Temperature</td>
<td>Liquid helium cooled magnets are no longer the only superconductor option</td>
</tr>
<tr>
<td>Superconducting magnets</td>
<td>Superconducting magnets</td>
<td></td>
</tr>
<tr>
<td>Magnets < 6 Tesla</td>
<td>Magnets > 6 Tesla</td>
<td>Advanced magnets exist today, with large scale deploy (LHC & CERN)</td>
</tr>
<tr>
<td>Analog electronics</td>
<td>Digitally controlled electronics</td>
<td>New MHD generator measurement & control possibilities</td>
</tr>
<tr>
<td>Conventional manufacturing</td>
<td>Advanced manufacturing</td>
<td>New channel construction approaches.</td>
</tr>
<tr>
<td>Seeded flows</td>
<td>“Excited” plasma</td>
<td>“clean gas” or new ionization approaches in MHD power systems may be possible</td>
</tr>
</tbody>
</table>
Prospects: Electrical & MHD

• Fast Switches
 – Generator control (digital)

• Improved DC Power conversion & conditioning

• Or DC Power on Grid
 – Attractive with renewables

• Need for carbon capture
 – EPA emissions limit (proposed)
 – Natural gas (eventually)

• Distributed Power Generation
 – smaller systems are more likely
Prospects: Smaller MHD Devices

- More oxygen = less flow rate
 - ~4x less volume.

- Bad: Material Exposures
 - smaller and higher temps means more heat loss issues
 - More reason for high temp materials for low heat losses
 - Current density issues (more potential arcing)

- Good: Less materials (cheaper)
 - Magnet costs scales with bore volume
 - Smaller (less expensive) generator with same power
Prospects: Air Separation Technology

For 100% pure O2 production, theory limit*:

\[
W_{\text{min}} = -RT\left[\ln(x_{o2}) + \frac{(1-x_{o2})}{x_{o2}} \ln(1-x_{o2})\right] = -8.314 \times 298.15 \times 2.447
\]

\[
= 6.067 (kJ/molO_2) = 47.82 (kWh/tonO_2)
\]

- Consider best cryogenic currently at 3x to 4x limit (~6x in 1980s)
- Consider Thermo Limits
 - Oxy-fuel MHD more attractive with ASU costs going down.
 - Enhanced-air MHD for partial capture?
 - Slip stream Cryogenic CO_2 or Chemical Scrubbing

- ASU technologies
 - Absorption
 - Cryogenic (most widely adopted large scale today)
 - Membranes (different types)

*2012 NETL final report (DOE/NETL-2010/1405)
Prospects: Magnets part 1/2

• **Materials- > Lots of possibilities**
 – LTS: NbTi; Nb₃Sn
 – HTS: YBCO, FeAs

• **Fabrication into windings (the bigger challenge)**
 – Ceramics tend to be brittle
 – New fab, techniques.
Prospects: Magnets part 2/2

• Side note: SMES (Superconducting Magnetic Energy Storage)
 – Eg: torrodial (an advantage is low stray fields)

• Cooling
 – Cryocooler advances: designed operating temperature with HTS
Prospects: Materials & Manufacturing

- Field Assisted Processing
- 3D printing
- Automation

Handle higher current densities

MHD materials needs

- Combustion Injectors & Igniters
- Combustion wall material (and TBC)
- Convergent/divergent Nozzle
 - Copper traditionally used
 - High heat losses small scale
- Superconductors for magnet
 - Economics & issues in windings
- MHD Channel Insulators
- MHD Channel Structural elements
- MHD Channel Electrodes
 - Traditionally cladded copper
 - Durability Identified as major problem in legacy work
Uniqueness of MHD Power Generation (w/ gas)

Things that have been less studied/developed in last ~25 years

- Partially Ionized Plasma Characteristics
 - Ionization strategies and time scales
 - Electron-molecular collisional cross sections between 0.2 eV < 1 eV
 - Boundary layer behavior in B field
 - electron transfer
 - velocity and turbulence
 - Temperatures and heat transfer
- T,E, P, B materials exposure in MHD Generator
 - Note hot flow might be 3000K, cold magnet 4K
- MHD combined cycle system performance & techno-economics
- Generator Loading and Control Schemes for Power Optimization
Path Forward: Many Routes for MHD

- Applicable Energy Sources for MHD: Coal, NG, diesel, biofuels, concentrated solar, wave/water/wind, nuclear

- Some Major Tech. Considerations (performance and cost):
 1. Conductivity (thermal, excited)
 2. Current Extraction (Hall, Faraday)
 3. Material Exposure (clean, slagging, wall cooling)
 4. Operation (steady, pulsed)
 5. Flow Geometry (linear, rotating, disc, spiral)
 6. Magnet Type & Strength (LTS, HTS, permanent)
 7. Velocity (subsonic, supersonic)
 8. Emission Controls (GPU type)
 9. Cycle (Open, Closed, Metal / Combined)
 10. Chemical Energy Conversion (combustion, detonation)
“Those who fail to learn from history are doomed to repeat it”

Questions?

• Presentation Acknowledgments: Geo Richards, Tom Ochs, Lauren Kolczynski, John Lineberry, Bill Owens

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.