Nanoscale X-ray Computed Tomography of Solid Oxide Fuel Cell Electrodes

William K Epting, 1-3 Shawn Litster, 3 Kirk Gerdes, 1 Paul A Salvador 1,2

¹National Energy Technology Laboratory, U.S. Department of Energy; ²Dept of Materials Science and Engineering, Carnegie Mellon Univ.; ³Dept of Mechanical Engineering, Carnegie Mellon Univ.

Abstract

- Understanding performance degradation in SOFCs requires an understanding of electrode microsctructure
- Prior methods yield small fields of view below scale of eterogeneity present in some cells
- Nanoscale X-ray CT can yield 3D microstructure of a larger volume

Here, we present imaging, artifact removal, and analysis of the scale of heterogeneity in industrial SOFC electrodes

Nanoscale X-ray CT of Solid Oxide Fuel Cells

X-ray CT with 65 nm resolution

Three-Phase Artifact Segmentation resolution limit grevscales based on real volumes of LSM elsewhere YSZ (bright) structure LSM artifact coating all YSZ-pore interfaces)

LSM artifact even

Removal Method: Morphological Dilation **Dilation:** Different kernels and sizes **Artifact** removal by sequential dilation

Studying Dilation Parameters for Artifact Removal

Using a Spherical Dilating Kernel of R = 2:

3D Spatial Analysis of TPB Distribution

TPBs determined vertex-by-vertex in 3D

Vetices connected to orthogonal neighbors

accurate length measurement

Paths smoothed for

Local TPB length stored on voxel-by-voxel basis for 3D spatial analysis

Heterogeneity Analysis

ROIs placed within larger volume

How much does TBP density differ between each cube, as the cubes become smaller?

±40% TPB, based on 95%

---90% CI

-95% C

Larger volumes (30+ µm) required accurately characterize more heterogeneous industrial cells - nano-CT is capable

Ongoing Work: Advanced Sample Prep for Larger, More Representative Samples

may favor statistically unusual samples: "why did it break

In fact, this sample is more homogeneous than many other samples previously attempted in FIB-SEM, which exhibited large superpores, or 4+ µm boulders of solid material.

Analysis of larger cathode volume (45 x 32 x 25 µm)

Acknowledgment:

As part of the National Energy Laboratory's Technology research portfolio, this work was conducted under the RES contract DE-FE0004000

