Understanding performance degradation in SOFCs requires an understanding of electrode microstructure. Prior methods yield small fields of view below scale of heterogeneity present in some cells. Nanoscale X-ray CT can yield 3D microstructure of a larger volume. Here, we present imaging, artifact removal, and analysis of the scale of heterogeneity in industrial SOFC electrodes.

Abstract

- Understanding performance degradation in SOFCs requires an understanding of electrode microstructure.
- Prior methods yield small fields of view below scale of heterogeneity present in some cells.
- Nanoscale X-ray CT can yield 3D microstructure of a larger volume.

Three-Phase Artifact

- **Raw Virtual 2D slice**
 - Segmentation
 - Void (continuous)
 - LSM
 - YSZ
 - Void (discontinuous)
- Artifact: LSM-YSZ interface

Removal Method: Morphological Dilation

- **Dilation:**
 - Different kernels and sizes
 - Void removal by sequential dilation
 - Void + LSM + YSZ

Ongoing Work: Advanced Sample Prep for Larger, More Representative Samples

- **Cut-and-polish method**
 - Cut
 - Polish
 - Trim with laser
 - Extract pillar

Using a Spherical Dilating Kernel of R = 2:

- **3D Spatial Analysis of TPB Distribution**
 - TPBs determined vertex-by-vertex in 3D
 - Vertices connected to orthogonal neighbors
 - Paths smoothed for accurate length measurement
 - Local TPB length stored on voxel-by-voxel basis for 3D spatial analysis

Heterogeneity Analysis

- Multiple cubic ROIs placed within larger volume
- How much does TPB density differ between each cube, as the cubes become smaller?

Analysis of larger cathode volume (45 x 32 x 25 μm)

- Virtual 2D slice from 3D image
- Phase fraction analysis
- Phase connectivity analysis

Acknowledgment:

As part of the National Energy Technology Laboratory’s research portfolio, this work was conducted under the RES contract DE-FE0004000.