Alkali-Free Viscous Sealing Glasses for Solid Oxide Fuel Cells

Cheol-Woon (CW) Kim, Joe Szabo, Ray Crouch, and Rob Baird
MO-SCI Corporation, Rolla, MO; ckim@mo-sci.com

Richard K. Brow, Jen Hsien Hsu, Casey Townsend, and Raphael Reis
Department of Materials Science and Engineering and the Graduate Center for Materials Research
Missouri University of Science and Technology, Rolla, MO; brow@mst.edu

DOE SBIR Phase II Contract # DE-SC0002491

Why Consider a Viscous Glass Seal for an SOFC?

- Potential for lower thermal stresses through viscous relaxation at operational temperatures
- Less critical that seal has CTE mismatch to dissimilar materials
- Potential for ‘re-sealing’ at operational temperatures through viscous flow
- Potential solution for the flatness and/or parallelism issue of (planar) cells for large scale SOFCs

Objectives

- Develop glass compositions that exhibit stable thermomechanical/thermochemical properties, including viscosity, for use as seals for SOFCs
 a) Long-term stability in viscosity (650-850°C)
 b) Tg > 650°C: thermal stress will be relieved
 c) Tg > 650°C: requisite flow for re-sealing behavior
 d) Tg > 800°C (as low as possible): a small volume fraction of crystals
 e) CTE(T_g-sub,T_g): 10.125-10^{-10}°C

- Conduct hermetic sealing tests
- Characterize thermochemical reactions

Promising Compositions Were Identified

- Preferred compositions exhibit promising sealing behavior

Hermetic Sealing Tests

- Glass 73 seal has survived 100 thermal cycles (750°C to RT; cooling rate ~13°C/min, heating rate ~13°C/hr) in dry air and wet forming gas at a differential pressure of 0.5 psi (28 Torr) over the course of 15,000 hours without failure and the test was deliberately terminated for analysis

Re-Sealing Tests

- Tried to break a seal by fast cooling as possible in the furnace, but no seal failure
- Glass 73-Coupon: No seal failure up to 15 psi, 850°C

Re-Sealing Tests (ex-situ)

- Glass 73-Coupon: Thermally cracked and healed
 Seal originally found to be hermetic
 Glass seal deliberately cracked by high cooling rate quench (~25°C/s)
 Crack healed after re-heating to 725°C for 2 hrs

Long-Term Reactivity Characterization-thermally cycled

- Excellent wetting and bonding to both aluminized metal and YSZ
- Glass is homogeneous
- No crystals in glass
- No significant elements from metal or ceramics diffusing into glass
- BaSi₂O₅ layer at glass/metal interface

Long-Term Reactivity Characterization-isothermal

- Excellent wetting and bonding to both aluminized metal and YSZ
- Glass is homogeneous
- No crystals in glass
- No significant elements from metal or ceramics diffusing into glass
- BaSi₂O₅ layer at glass/metal interface

Volatility of Glasses

- Summary of re-sealing tests (ex-situ)

Crystal Growth Kinetics Depend on Alumina Content

- Summary
 - We have developed an alkali-free Ba-borosilicate glass that resists crystallization under SOFC operational conditions
 - We have produced hermetic seals with SOFC components
 - survive thermal cycling
 - reseal when thermally shocked
 - These glasses can react with aluminized stainless steel and celsian (BaAl₂Si₂O₈) will form under SOFC operational conditions

Acknowledgements

- SECA
- DOE SBIR Phase II Contract # DE-SC0002491
- DOE Project Officer: Dr. Joseph Stoffs, NETL
- Dr. Yeong-Shyung Matt Chou/Dr. Jeff Stevenson, PNNL

www.mo-sci.com