Office of Fossil Energy’s Solid Oxide Fuel Cell Program Overview

Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory

15th Annual SECA Workshop
Pittsburgh, PA
July 22 -23, 2014
FE Solid Oxide Fuel cells (SOFC) Program

FE Clean Coal R&D Program

CCS and Power Systems

Advanced Energy Systems

Carbon Storage

Solid Oxide Fuel Cells

Carbon Capture

CCS Demonstrations

Coal & CBTL

Advanced Turbines

Crosscutting Research

Advanced Combustion Systems

Gasification Systems

CCS: Carbon Capture and Storage
SOFC Power Systems – Cost of Electricity (COE)

SOTA: State of the Art
IGCC: Integrated Gasification Combined Cycle
PC: Pulverized Coal
IGFC: Integrated Gasification Fuel Cell
NGCC: Natural Gas Combined Cycle
NGFC: Natural Gas Fuel Cell

* Advanced IGCC system includes: coal feed pump, warm gas cleanup, H₂ membrane, advanced H₂ turbine, and ITM
** Advanced IGFC system includes catalytic gasifier, 0.2% degradation rate, and internal reforming
*** Advanced NGCC system features a J-class turbine with a state-of-the-art carbon capture system

Advanced SOFC systems are cost-competitive with IGCC and NGCC Systems

Source: NETL Systems Analysis
SOFC Power Systems - Efficiency

SOTA: State of the Art
IGCC: Integrated Gasification Combined Cycle
PC: Pulverized Coal
IGFC: Integrated Gasification Fuel Cell
NGCC: Natural Gas Combined Cycle
NGFC: Natural Gas Fuel Cell

* Advanced IGCC system includes: coal feed pump, warm gas cleanup, H₂ membrane, advanced H₂ turbine, and ITM
** Advanced IGFC system includes catalytic gasifier, 0.2% degradation rate, and internal reforming
*** Advanced NGCC system features a J-class turbine with a state-of-the-art carbon capture system

SOFC system performance is superior to all other systems
SOFC: Meets DG Market Need

- **SOFC Natural Gas DG all-electric power application**
 - Provides > 20 percentage point gain in efficiency
 - Substantially reduces CO₂ emissions (lb/kWh)
- **Cost-competitive SOFC DG product by circa 2020**
- **Projected learning curve to achieve competitive cost is consistent with similar technology commercialization experience**

SOFC Natural Gas DG applications will provide pathway to utility scale coal and natural gas-fueled power plants with >97% carbon capture
SOFC Program

• **Focus:**
 - Near Term: Natural gas distributed generation (DG)
 - Long Term: Coal and natural gas central station applications with CCS

• **Targets:**
 - System Performance Degradation: 0.2%/1,000 hours
 - Stack Cost: $225/kWe*
 - Power Block Cost: $900/kWe*

• **Development Timeline**
 - FY2016: 125 kWe-class Module Test
 - FY2018: FOAK** 250 kWe Power System Field Test
 - FY2020: FOAK** 1 MWe-class Power System at customer site
 - Post-FY2020: Utility-scale IGFC/NGFC Central Station

Based on progressively larger natural gas-fueled validation tests, MWe-class DG SOFC Power Systems that are *cost-competitive* with existing DG technologies are envisioned circa 2020

* N°—of-a-kind at specified volume, 2011$s
** FOAK – First-of-a-Kind
SOFC Program - Structure

R &D Needs
Research Topics

Industry Teams

Core Technology Program
(Universities, NLs)

Technology Transfer
SOFC Program – FY 14 Projects

The SOFC program supports a diversified portfolio of ~20 R&D projects
SOFC Program - Project Portfolio

Atmosphere Pressure Systems
- FuelCell Energy
- Delphi

Pressurized Systems
- LG Fuel Cell Systems

Anode Electrolyte Cathode (AEC) Development

<table>
<thead>
<tr>
<th>Boston U</th>
<th>Georgia Tech</th>
<th>NETL/RUA</th>
<th>ORNL</th>
<th>PNNL</th>
<th>U. Connecticut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford</td>
<td>U. Maryland</td>
<td>U. Wisconsin</td>
<td>WVU</td>
<td>WVU-EPSCoR</td>
<td></td>
</tr>
</tbody>
</table>

Small Business Innovative Research
- Innosense LLC
- Mo-Sci
- MSRI
- NexTech
- Sonata LLC

Congressionally Directed Projects
- Penn State U.
- U. Akron
Since its inception as the Solid State Energy Conversion Alliance (SECA), the U.S. Department of Energy has invested nearly $600M in SOFC technology.
SOFC Program - Challenges

• **Improved Cell Performance**
 – Today: Overpotential = 140 mV at normal operating conditions
 – Target: Overpotential = 70 mV at normal operating conditions

• **Improved Durability and Reliability**
 – Today: Lab-scale stack tests
 – Target: Fully-integrated SOFC power systems

• **Reduced System Performance Degradation**
 – Today: 1 – 1.5% per 1,000 hours
 – Target: 0.2% per 1,000 hours

• **Fuel Reformation**
 – Today: Primarily external fuel (natural gas) conditioning/reformation
 – Target: 100% integrated fuel reformation inside fuel cell stack

• **Manufacturing**
 – Today: Batch processing
 – Target: Advanced manufacturing techniques

Single-cell performance and degradation are acceptable; stack and system performance, reliability and endurance needs to be demonstrated
FY14 SOFC Program Update

- Two competitive solicitations
 - 11 projects selected
 - 2 Industry Teams, 9 Core Technology

- Increased emphasis on system level testing

- Increased emphasis on Industry Team – Core Technology collaboration

- Peer Review of 7 Projects

- Updated NETL and SOFC Program website

- Web-based SOFC Program Portfolio

- Three new SBIR projects
Natural gas fueled DG systems will establish the manufacturing and operational experience necessary to validate and advance the technology for both natural gas and gasified coal-based central power generation.
SOFC Program ... Key Takeaways

- Focus on cost reduction and increased reliability
- Demonstrations at system-level are critical
- Industry Team - Core Technology collaboration is essential
- Look out for and take advantage of revolutionary advances in materials and manufacturing processes

A technically and economically viable SOFC system will create market-pull
15th Annual SECA Workshop - Overview

Tuesday
- **Plenary Session:** ARPA-E, Booz Allen Hamilton
- **Industry Team Presentations**
- **National Laboratories**

Tuesday Evening Poster Session and Reception

Wednesday
- **Plenary Session:** Synopsis of Interconnection Development
- **Core Technology Teams:** Cathodes
- **Core Technology Teams:** Modeling
- **Core Technology Teams:** Protective Coatings
15th Annual SECA Workshop Participants
Web-sites and Contact Information

NETL Website: www.netl.doe.gov/
SOFC Program website: www.netl.doe.gov/research/coal/energy-systems/fuel-cells
Reference Shelf:
- SOFC Program FY14 Project Portfolio
- SOFC Technology Program Plan
- Technology Readiness Assessment
- Past SECA Workshop Proceedings
- Systems Analysis
- Fuel Cell Handbook

Dr. Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory
U. S. Department of Energy
412-386-7515
Shailesh.Vora@netl.doe.gov

www.netl.doe.gov/research/coal/energy-systems/fuel-cells
SOFC Program – FY14 Selections

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Title</th>
<th>DOE Share</th>
<th>Recipient Cost Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acumentrics</td>
<td>Advanced SOFC Quality Control and the Role of Manufacturing Defects on Stack Reliability</td>
<td>$788,267</td>
<td>$197,067</td>
</tr>
<tr>
<td>Boston University</td>
<td>Mitigation of Chromium Impurity Effects and Degradation in SOFCs: Understanding Transport and Thermodynamics</td>
<td>$800,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>Case Western Reserve University</td>
<td>Long Term Degradation of LSM-Based SOFC Cathodes: Use of a Proven Accelerated Test Regimen</td>
<td>$798,175</td>
<td>$326,759</td>
</tr>
<tr>
<td>University of Connecticut</td>
<td>Materials and Approached for the Mitigation of SOFC Cathode Degradation in SOFC Power Systems</td>
<td>$800,000</td>
<td>$202,125</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>Durable, Impermeable Brazes for Solid Oxide Fuel Cells</td>
<td>$694,026</td>
<td>$173,506</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>Cost-Effective Manufacturing and Morphological Stabilization of Nanostructured Cathodes for Commercial SOFCs</td>
<td>$800,000</td>
<td>$200,070</td>
</tr>
<tr>
<td>University of South Carolina</td>
<td>University-Industry Driven Partnership to Develop Reliable, Robust and Active SOFC Cells and Stacks</td>
<td>$500,000</td>
<td>$283,170</td>
</tr>
<tr>
<td>West Virginia University Research Corporation</td>
<td>Novel Nanostructured-Tailored Highly Active and Stable Electro-Catalytic Architecture on Surface of Cathode of SOFCs</td>
<td>$500,000</td>
<td>$157,822</td>
</tr>
<tr>
<td>West Virginia University Research Corporation</td>
<td>Scalable and Cost-Effective Barrier Layer Coating to Improve Performance and Stability of SOFC Cathode</td>
<td>$800,000</td>
<td>$243,586</td>
</tr>
<tr>
<td>FuelCell Energy Inc.</td>
<td>Reliable SOFC Systems</td>
<td>$7,500,000</td>
<td>$1,875,000</td>
</tr>
<tr>
<td>LG Fuel Cell Systems</td>
<td>Improved Reliability of Solid Oxide Fuel Cell Systems</td>
<td>$7,500,000</td>
<td>$1,875,000</td>
</tr>
</tbody>
</table>