

SOFC Operational Degradation: Models and Diagnostic Tools

Kirk Gerdes

DOE-NETL

Technical Coordinator – Fuel Cells

the **ENERGY** lab

Acknowledgements

NETL RUA Fuel Cell Team

- Researchers at NETL, CMU, PSU, WVU, and URS
 - Long-Qing Chen, Jia-Mian Hu, Liang Hong
 - Paul Salvador, Shawn Litster, Billy Epting
 - Sean Donegan, Tony Rollett
 - Ismail Celik, Tao Yang, Hayri Sezer
 - Xingbo Liu, Hui Zhang
 - Harry Finklea, Kaushayla de Silva
 - David Mebane, Josh Blair, Giuseppe Brunello
 - Ed Sabolsky, Ozcan Ozmen
 - Xueyan Song, Yun Chen
 - Harry Abernathy
 - Gregory Hackett, Rich Pineault
 - Shiwoo Lee, Lynn Fan, Regis Dowd
 - Yves Mantz
 - Tom Kalapos

SECA Program

- Briggs White, Joe Stoffa, Rin Burke, Travis Shultz
- Shailesh Vora

SECA Industry Teams

- Delphi Rick Kerr, Joe Bonadies,
 Stephanie Surface, Ken Rahmoeller
- LGFCS Rich Goettler, Ted Ohrn,
 Zhien Liu
- FC Energy Hossein Ghezel-Ayagh, Eric Tang, Stephen Jolly

SECA Core Teams

- PNNL Jeff Stevenson, Brian Koeppel, John Hardy
- Core University Pls

NETL ORD - Solid Oxide Fuel Cells

Support Industrial Development

Operation of NETL Solid Oxide Fuel Cell Multi-Cell Array on direct, coal-derived synthesis gas at the National Carbon Capture Center at Wilsonville, AL in August/Sept 2009.

Collected 4,000 + cell-hours of data to support development of gas cleanup systems sufficient for gasifier / fuel cell integration.

Innovate Technology

Cathode infiltration technology is being developed to enhance the SOFC operating performance. Initial results have demonstrated > 40% performance improvement and acceptable material stability.

Evaluate Advanced Concepts

Fundamental computations (3D multiphysics model, at left) inform modeling of advanced degradation, performance, and microstructural evolution at the cell and stack level.

Integrated gasifier / fuel cell / turbine systems (IGFT, at right) support advanced fuel cell demonstrations efforts (2013+). NETL operates a system hardware evaluation and controls development platform.

NETL Multi-year research: SOFC Hurricane Model

SOFC lifetime operational modeling

Critical thrust (broad): Computationally guided materials development

Specific: SOFC "Hurricane Model"

Hossein Ghezel-Ayagh, "Progress in SECA Coal-Based Program"

Current Focus of "Hurricane Model" Task:

- Integrate existing models ORR, 3D multi-physics, Evolution, UQ
- Generate high fidelity simulations and visualizations
- Initiate computationally guided materials/system development

NETL ORD research execution

TEM analysis of industry-provided source material (LSCF analysis)

EDS 6: $(La_{0.97}Sr_{0.03})_{1.07}(Fe_{0.16}Co_{0.84})Ox$

Cation diffusion in cathode materials

Impedance modeling and advanced analytical tool development

SOFC Development

Please review our team's posters during the exhibition

Sample needs to fit within the nano-CT's 65 µm field of view for proper 3D reconstruction

> Ni-YSZ Anode

Scanned images 2D Slices

Segmented images 2D Slices

10um

Black: Pore Yellow: YSZ Red: Ni

➤ Ni-YSZ Anode

15μm x 15 um x 15 um cubes for high resolution analysis

- NEXT: `Reconstruction of a complete commercial \rightarrow data to inform computations
- Time-dependent examinations will proceed in next project period

FY13 demonstration of phase field coarsening model

Original model considers interfacial energies and surface mobility

More detailed fundamental parameter assignment \rightarrow interfacial cation diffusion

Original Model: Coarsening is driven by the differences in curvature, described by Cahn-Hilliard equation.

Update: Cation inter-diffusion is driven by concentration gradients, described by diffusion equation

Experimental data from Yang et al., JaCers 87, 1110 (2004)

PENNSTATE

Adding local oxygen vacancy concentrations and applied electrostatic fields

Oxygen vacancy equilibrium is rapid compared to cation

Accomplishments

- Tunable model describing particle coarsening complete
- Independently validated descriptions of cation diffusion in LSM/YSZ interfaces complete
- Oxygen vacancies treated, physically accurate static model

In progress

- NETL validating experiments for LSM/YSZ, generation of temperature dependent model
- Validation of dynamic oxygen vacancy model

Next project period

 Correlate interface evolution with activity changes and altered microstructural evolution kinetics

Application

Fundamental development -> Application

- Reaction and transport model
 - Ismail Celik (poster)
 - Pakalapati et al. Solid State Ionics 258 (2014) p 45
- Oxygen reduction reaction model
 - Xingbo Liu (poster)
 - Gong et al. J Electrochem Soc 161 (3) F344 (2014)
- VI and EIS experiments
 - Harry Finklea (poster)
 - Finklea et al. J Electrochem Soc 160 (3) F1055 (2013)

Application: *Impedance simulation to analyze cell performance*

Tool Deployment: *Modules to examine ORR* and visualize cell structures

- Simulation uses physically relevant reaction and transport processes to model VI and Impedance behavior
- Electrode reaction mechanisms / equations defined by user
- Butler-Volmer reactions used for results at right
- Experimental data are collected for several operational configurations on the same cell
- VI simulations are generated using parameters accurate within a known range
- Dynamic modeling allows simulation of impedance

- Simulation is refined to produce an accurate fit to experimental data
- Optimized parameters are recompared to experimental results to assure physical plausibility

- In progress: Time dependent association of EIS features to model parameters (LSM system)
- Tool will be refined to make it accessible to R&D teams
 - User supplies impedance data as input
 - Tool allows alteration of model and model parameters
- Supports computationally guided electrode optimization and lifetime analysis
- Next project period: Validation of LSCF model
- Short term degradation assignments (500 hours) → Impedance v. Parameters
 - Including analytical verification
- Seeking: Validating data from industry teams

Impact: Directly associate impedance features with a unique and definable physical process

→ detailed understanding of manufacturerspecific degradation mechanisms

Impact

FY13 testing with commercial partner

- Partner 1: No discernable improvement (post operational analysis identified problem)
- Partner 2: > 10 % power density improvement at 700°C

FY14: Repeat test with commercial partner

- Short stack (9 cells)
- Cell area > 100 cm² manually infiltrated
- 'Conventional' operation for 500 hours, high current density for next 2000 + hours. Air utilization raised to 50% at 1000 hours, 65% at ~1800 hours

2 cells with 'conventional' infiltrate

 Initially superior performance degrades over 2700+ hour test very small distinguishable improvement

2 cells with 'advanced' infiltrate

- Cells are #1 and #2 performers in 9-cell stack
- After 2700 hours, both infiltrated cells are
 - 3% higher power than best baseline (un-infiltrated) cell
 - 20% higher power than lowest baseline cell
 - 11% higher power than avg baseline cell
- Degradation (@ 2700 hrs)
 - 38% relative improvement over baseline cells (8% absolute)
 - Direct improvement in cell lifetime

 TRL 6 complete in November 2014 –scalable manufacturing process for reliably generating 1000's of cells

- Infiltrate cost today (manual process, small batches):
 - 'Conventional' \rightarrow \$0.0038/cm²; 'Advanced' \rightarrow \$0.0054/cm²
- Final steps: Cut cost by 50%, scale '1-step' infiltration

NETL Fuel Cell Team - Infiltration

- Will provide standard and advanced infiltration to SECAassociated teams for short and full stack testing
 - Strong interest in kW+ test
 - NETL team can support operational monitoring and postoperational analysis
- Will provide complete technical details of 'standard' infiltrate
 - Detailed data from more than 4 years of testing are available
 - Provisional patent filed on advanced infiltration techniques

Thank you for your time and attention.

Contact:

Kirk Gerdes

DOE-NETL

Technical Coordinator – Fuel Cells

Office: (304)285-4342

EM: Kirk.Gerdes@NETL.DOE.GOV

the **ENERGY** lab

