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Fundamental Mechanisms of SOFC Cathode Reactions

Systematic Approach to Deconvoluting Cathode Polarization:
Rcathode = RGas Difussion T R$urface Adsorbtion/Diffusion + RChargc Transfer T ROhmic

RGas Difussion @nd Rohmic are functions of:
* Microstructure (porosity & phase fraction, tortuosity, oonnoclivity)
* Conductance (solid phase conductivity or gas phase diffusivity)

Rsurface Adsorbtion/Diffusion are functions of:
» Microstructure (surface arcaivolume)
e Kinetics (surfacc coverage, surface diffusivity)

R.(.'hargc Transfer 18 function of:
* Microstructure (L, surface area’volume)
e Kinetics (Oxygen reduction ratc)

Integrating EIS, '®*O-exchange, and FIB/SEM & STEM/EDS
— to quantify cathode degradation mechanisms
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Fundamental Rate Constants - Catalysis
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ORR Reaction Mechanisms in Presence of H20 and CO:

C*0"0 H,*0 ORR Products "©O"C 00 oMo

d’ a : o® o¥ o

Provides information about

Contaminant

dissociated "*O,,,
g (ﬁFe) By Products H,O  H,*0
La.Sr , ‘... /’ . ;._ - y - ‘ -- '\ N ” .'_ b(‘\/ (_,‘\./

C*O'0 C'0"%¥0 (C*0"*0

A a4

Provide information about surface
reaction with contaminanis

ady

%
S+l/202:-'0

&y
X
O,+V, :-fs +0O,

8 LARVIAND
Energy Research Center




Effect of H20 on LSM Temp. Programed '80-Exchange

TPX of LSM without H,0 TPX of LSM in ~0.3% H,0
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Effect of H20 on Isothermal Isotope Exchange of LSM

Time (minutes) Time (minutes)
* LSM is limited to surface or near Hmw ] N
surface exchange Bow ‘
* LSM surface comes to '#0/"*0 5 20
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* Resulting in more scrambled #0650 g " H,0 exchange with **0,
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Extracting the Surface Exchange Coefficient from IIE

lIE of LSCF 800°C
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Comparison with Symmetric Cell Testing

Air (Synthetic) Direct comparison of cathodes with and without
exposure to contamination with same thermal history
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Effect of H20 on LSM/YSZ Cathode Impedance (EIS)
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Baseline/aging in H20 LSM-YSZ/YSZ/LSM-YSZ Cell Testing
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Comparison of LSM Cell Testing and |IE Results

Impedance vs. Cell Run-Time
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Quantify Microstructural Effects - FIB/SEM

Baseline cell reconstruction/network analysis

LSM in \ 5 Connected
& MARVIAND cathode | cathode | pore network
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Triple Phase Boundary Length Comparison

FIB/SEM reconstruction of symmetric cell aged at 800°C for 500 hrs
with one side in dry air and the other in air with 3% H20

‘Relative to

basefine Baseline Aged-dry H20
Active TPB
(norm) 100% 32.6%* 27.5%"

Total pypg [pm/
pm’) 19.2 9.69 8.57

« Observe decrease in active Lypg UpON aging
- Effect is worse with exposure to 3% H,0
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STEM-EDS Maps of LSM-YSZ Aged in Air

STEM-EDS of symmetric cell aged at 800°C for 500 hrs
with one side in dry air and the other in air with 3% H:0

STEM-EDS maps of Aged-dry
SOFC cathode near

electrolyte interface

«Still distinct particles of LSM
and YSZ

*Perhaps more Mn distributed
throughout YSZ

| oy - - | PSS

While morphological changes in dry air, no observed chemical change
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STEM-EDS Maps of LSM-YSZ Aged in Air + H20

STEM-EDS of symmetric cell aged at 800°C for 500 hrs
with one side in dry air and the other in air with 3% H:0

STEM-EDS maps Aged-
H:0 SOFC cathode

*Distinct particles of LSM
and YSZ

*Segregation of La and Mn
at YSZ grain boundaries

»Sris not localized at
boundaries

Observed segregation of La and Mn to YSZ grain boundaries for wet aged LSM/YSZ
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Isotope Saturated Temperature Programmed Exchange (ISTPX)

IIE - Probes the impact of
contaminants on gas phase ¢0;

exchange with cathode surface
BOBO CEQ1E0 H,'"O

oY # '\,.\,

ISTPX - Probes competitive ORR
in presence of contaminants on
'80-labeled cathode surface

w00 C'léo'ﬁo H;."EO

o ¢ A

Also allows experiment in ambient Po2
without saturating mass spectrometer

& LARVIAND
Energy Research Center




Interaction Between Oz, COz and LSCF Surface

602 exchange with lattice 80 C'80; exchange with lattice 80O
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Interaction Between Oz, CO2 and LSCF Surface

160, and C'80; co-exchanged with lattice 20

Tem

100200 300 4

Je e C"®0; and '®0; exchange with
|2m g lattice oxygen in parallel

e g _____ Doubly-exchanged C'#*02
{1000 & dominates between 350-450°C

- Single exchanged C'*Q'%0
i 3 dominates below 300°C
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odi-d il B
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CO: exchanges preferentially with
lattice at lower temperature:
*initially exchanging only single
"O" (atomic)
«then both "O" (molecular)
ethen at same rate as Oz
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ISTPX of LSCF with 2500ppm CO2 at ambient PO2

Competitive exchange of CO; vs O; with lattice '®0 at ambient PO;

CO: exchanges preferentially even at ambient POz
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Oz exchange with lattice "*O
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ISTPX of LSCF and LSM with 2500ppm CO: at ambient PO
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LSM also has significant CO2 exchange at low PO:.
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However, for both as POzincreases relative COz exchange decreases.




ISTPX of LSCF in 25000ppm O2 with 6000ppm D20

Oz exchange with lattice '#O
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Temperature and POz Dependence of LSCF in D20
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Temperature and POz Dependence of LSCF in D20

Exchange as function of
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Comparison of LSCF and LSM Temp-PO2 Dependence

in D20
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%,
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* LSCF more active toward D:O exchange than LSM
* D;O exchanges with LSM only at high temp in presence of O;
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Temperature and POz Dependence of LSCF in CO2
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Doubly Exchanged C'®0Q"80
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Comparison of LSCF and LSM Temp-PO2 Dependence in CO2

Singly Exchanged C160180 Doubly Exchanged C“‘O“’O
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« From our previous observation LSCF-GDC and LSCF have similar exchange
Kinetics due to both having high oxygen vacancy concentration

* While LSM-YSZ is dramatically enhanced relative to LSM indicating greater
importance of TPBs and co-existence of O-dissociation and O-incorporation

phases B
dp- Serfsce Evchange Corflichonts of Compenite Cathode Materials
Using In Nou Dothermal lwotope Fachange
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Comparison of LSCF and Composite LSCF-GDC in D20

25000ppm Oz and 6000ppm DzO
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Comparison of LSCF and Composite LSCF-GDC in CO2

25000ppm Oz and 2500ppm CO:z
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Comparison of LSM and Composite LSM-YSZ in D20

25000ppm O2 and 6000ppm D20

25000
E 20000} E
=8 a
S 30»0
C 15000 [ —~
§ 3000

10000 b
g ‘g 2000

SO00F 2
8 8 1000

) c190at
100 200 300 400 500 600 700 800
Temperature (°C) Temperature (°C})

* LSM-YSZ composite demonstrates much greater exchange than
LSM at much lower temp for DzO

* Composite effect for LSM-YSZ much greater than for LSCF-GDC
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Comparison of LSM and Composite LSM-YSZ in CO2

25000ppm Oz and 2500ppm CO:

LSM-YSZ
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» LSM-YSZ composite demonstrates much greater exchange than
LSM at much lower temp for CO2

« Composite effect for LSM-YSZ much greater than for LSCF-GDC
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Conclusions

* We are integrating polarization measurements (EIS) with microstructural
characterization (FIB/SEM) and heterogeneous catalysis (1[E & ISTPX) to
provide fundamental understanding of cathode ORR and degradation mechanisms

* Demonstrated direct correlation between LSM/YSZ cathode impedance changes
during aging in 3% H:0 and changes in O; surface exchange of LSM and LSM/
YSZ microstructural and compositional changes

* O'5- exchange demonstrates LSCF is more active than LSM and has different
ORR mechanism

* COz and H20 actively participate in ORR for both LSCF and LSM
- Most likely influences literature k.« results

* Identified temperature and gas composition regions where CO:z and H.0
dominate O: surface exchange mechanism and where they are less important
- Needs to be taken into consideration when selecting cathodes and operating conditions

* Identified composite cathode effect on O surface exchange with CO: and H20
- Particularly dramatic for LSM/YSZ
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