ADA(U) Advancing Cleaner Energy

Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture

July 29, 2014 ADA-ES, Inc. DE-FE0004343

© 2014 ADA-ES, Inc. All Rights Reserved

\$16.5 M

\$6 M

DOE Funds Industry Cost Share

Project Funding and Goals

The overall objective of this funding stage is to validate solid sorbent-based post combustion CO₂ capture through slipstream pilot testing.

Project Goals:

- Achieve 90% CO₂ Capture
- Reduce costs of carbon capture *Progress towards <35% LCOE Goal*
- Generate a high purity CO₂ stream
- Successfully scale sorbents

Cooperative Agreement (Award No. DEFE0004343) American Recovery and Reinvestment Act of 2009 Administered by DOE-NETL: Project Manager Bruce Lani

Project Overview

© 2014 ADA-ES, Inc. All Rights Reserved

Project Team

- DOE NETL Project Sponsor
- ADA-ES, Inc.

- Project Management
- Developed Process Concept
- Sorbent Eval & Selection
- Process Validation Testing Techno-Economic Assessment
- Technip Stone and Webster Process Technology
 - Detailed Engineering Services Significant Experience with Fluidized Bed Reactor Design

 Stantec Consulting, Ltd. o Cost Analysis, Plant Integration

Owners Engineer Perspective

- McAbee Construction
 - Pilot fab and installation
- EPRI

- Technical Advisor
- o Cost Share
- Independent Performance **Evaluation and Techno-**Economic Assessme
- Southern Company

- Host Site, Cost Share
- Luminant o Cost Share

Post-Combustion CO₂ Capture

Sorbent Isotherms

Process Conceptual Design

© 2014 ADA-ES, Inc. All Rights Reserved

Development Approach

- Begin with the end in mind
 Identify cost drivers
- Focus R&D and execute work schedule with commercialization goal in mind

Phase I: Viability Assessment

- Evaluated over 250 candidate sorbents
- Refined sorbent properties
- Designed, built, and tested a 1kW entrained flow reactor
- Developed full-scale concept for initial cost estimate

Advantages of Solid Sorbents

- Energy Penalty -Sensible heat* and latent heat of evaporation are lower
- Non-corrosive Less expensive materials of construction, no corrosion inhibitors required
- Low volatility Reduced emissions of amines
- Water savings Less cooling water required, minimal liquid waste, no process makeup requirements
- No risk of foaming or other solvent-related challenges
- Reactions with SO₂ may be reversible

*Heat recovery developed for liquid systems

ADAsorb[™] CO₂ Capture Process

Advantages

- Heat transfer
 Isothermal operation
- Mass transfer favorable
- Proven at the industrial scale
- Approaches countercurrent gas/solids contacting
- Process Flexibility Can be applied to cycling plant "load following"

Challenges

- Pressure drop
- Solids circulation
- Sorbent attrition
- Water adsorption
- Heat recovery

Project Status

BP1

BP2

BP3

- 500 MW concept completed
- Design of 1 MW pilot completed
 - Detailed engineering of pilot complete
- Sorbent has been manufactured
- Fabrication of pilot is complete
- Installation of pilot is complete
- Commissioning of pilot has begun
- 1 MW Testing
- Develop 500 MW Preliminary Design
- Conduct Techno-economic analysis

BP 2: Process Investigations

- Design and build Cold Flow Model to investigate fluidization behavior
- Determine requisite particle size distribution
- Investigate attrition
- Measure heat transfer coefficient

BP2: Sorbent Stability

Sorbents must be able to maintain working capacity over thousands of cycles:

BP 2: Sorbent Stability

 Possible destruction mechanisms that must be avoided: Amine functional group oxidation
 Breakage of amine-substrate bond
 Formation of heat stable salt with amine functional group (e.g. SO₂ poisoning)

Pilot Fabrication Activities

Pilot designed in "modules"Off-site fabrication

© 2014 ADA-ES, Inc. All Rights Reserved

Pilot Module Transport

Advancing Cleaner Energy

© 2013 ADA-ES, Inc. All Rights Reserved

Pilot Installation

Project Schedule Forecast

<u>Task</u>	<u>Date</u>
Commissioning/Dry Startup	Aug- Sept '14
Sorbent Circulation	Sept '14
Field Testing	Oct- Nov '14

Advancing Cleaner Energy

© 2014 ADA-ES, Inc. All Rights Reserved

Pilot Testing: Host Site

- Southern Company Plant
 - PRB Coal
 - WFGD
- Pilot Designed for
 - 90% CO₂ Capture
 - ~2,100 lb CO₂/hr
 - Flue Gas Flow Rate
 ~ 3,500 ACFM

Pilot Testing: Focus Areas

- Sorbent attrition
 physical & chemical
- Volatile emissions
- Validate regeneration energy requirement
- Measure actual adsorption temperatures to maintain 90% CO₂ capture
- CO₂ purity
- Sorbent regeneration time

- Process effects from flue gas constituents
- Determine rate limiting steps
- Optimize process variables
 - Temperatures
 - Sorbent circulation rates

Next Steps

- Pilot Testing: Fall 2014
- Techno-economic analysis: 2015
- Continue evaluating options for post-pilot scale-up
 - Regulatory drivers alone do not justify continued investment
 - Will final regulations and oil prices support use of fossil-generated CO₂?

ADA(U) Advancing Cleaner Energy

Questions?

Sharon Sjostrom Chief Technology Officer sharons@adaes.com

© 2014 ADA-ES, Inc. All Rights Reserved

Jayson Denney Project Manager Jayson.Denney@adaes.com