

Low-Pressure Membrane Contactors for Carbon Dioxide Capture DE-FE0007553

-Richard Baker, Ken Chan, Brice Freeman, Don Fulton, Jennifer Ly,

Pingjiao Hao, Jay Kniep, Vincent Nguyen, Ivy Huang (MTR)

-Glenn Lipscomb, Terry Lou (University of Toledo)

NETL CO₂ Capture Technology Meeting

Thursday July 31, 2014

Project Overview

- Award name: Low-Pressure Membrane Contactors for CO₂ Capture
- Project period: 10/1/11 to 9/30/14
- **Funding:** \$ 3.0 million DOE; \$1.0 million MTR
- **DOE project manager:** Mike Mosser
- Participants: MTR, University of Toledo
- Project scope: Develop compact large membrane area (> 500 m²), low pressure drop plate-frame sweep module for CO₂ capture application.
- Project plan: The key project work organized by budget period is as follows:
 - BP1: Construct prototype laboratory modules (20m²), select components, develop fabrication technology.
 - BP2: Scale up production to 1m x 1m pilot scale modules (100m²), demonstrate with lab test system that modules meet CO₂ separation performance and pressure drop targets.
 - BP3: Scale up to full scale module (> 500 m²), show modules meet all performance targets. Be ready to test at NCCC.

MTR CO₂ Capture Team

The MTR Membrane Contactor

A Way of Generating an Affordable (Partial) Pressure Difference

A separation is performed at a minimal energy cost.

Coal Power Plant with a Membrane CO₂ Pre-Concentrator

Coal Power Plant with a Membrane CO₂ Pre-Concentrator

Current Approach Uses Modified Spiral-Wound Modules

Conventional spiral-wound module

Spiral-wound countercurrent/sweep module

Each module contains 20 to 50 m² of membrane.

Module Pressure Drop is Key

- 1 psi = 3 MW_e for a 500 MW_e plant
- Best spirals still have a 4 psi pressure drop on the sweep side
- Need to develop a module for this application

The Issues and Solutions

- Skid packing density
- Manifolding
- Footprint
- A sweep process
- Needs low pressure drop

Large area modules, compact skids

Needs wide, straight channels on both sides of the membrane

Two Membrane Contactor Designs

Countercurrent

- Most efficient
- Difficult to make

Cross-flow

- Uses 40% more membrane area
- Easier to make

Progress to Date (DE-FE0007553)

• BP1

– Footprint:

 $0.3 \, \text{m} \times 0.6 \, \text{m}$

– Modules:

20 m²

• BP2 and BP3

– Footprint:

1 m x 1 m

– Modules:

100 m²

100 m² Membrane Module

100 m² Membrane Module Details

- 60 70 individual membrane envelopes
- Weighs 100 kg completely assembled
- Has ~200 m of glue line seals (no leaks)
- Has the equivalent membrane area of 5 8" spiral wound membrane modules
- Sweep side pressured drop <0.5 psi

Our Concept

Large-Area Plate-and-Frame Modules

Membrane	Module	Skid	Total Cost
\$20/m ²	+ \$10/m² -	+ \$20/m ² :	= \$50/m ²

50 Module elements connected to make a 5000 m² module

Membrane Module and Test System

Membrane Contactor with Vessel

Test System

500 m² Skid for Testing at NCCC

100 m² Module Sweep Side Pressure Drop

Feed side pressure

- 2.5 psig
- \square 5 psig
- ▲ 8 psig
- \triangle 12 psig
- 12.76 psig

Sweep side air flow and pressure drop changes with membrane characteristics and operating conditions, but the effect is consistently small.

Various Module Flow Designs

Design		Membrane area needed compared to countercurrent
Countercurrent (CC)		100%
Cross-flow (XF)	→	137%
Partial countercurrent	≢	108%
Series cross-flow	★ ★ ★ ★ ★ ★ ★ ★ ★ ★	126%

What's Next

Accomplishments to Date

- 100 m² defect free modules made
- Pressure drops reduced to < 0.5 psi.
- Five module (500 m²) skid made and ready for NCCC test.

Next Steps

- Test five module skid at NCCC
- Scale up plan to get module skid cost to \$50/m² implemented.