

Hybrid PDMS Testing and Techno-economic Model

Nicholas Siefert

Task Technical Coordinator Pre-combustion Solvents

NETL CO₂ Capture Conference 8/1/2014

Team Members: Sweta Agarwal, Hunaid Nulwala, Elliot Roth, Fan Shi, Wei Shi, David Miller, Dave Hopkinson, Bob Enick, John Kitchin, and Dave Luebke

Outline

- Overall goal of project
- Experimental Data on Pre-combustion Solvents
- Discussion of Process Flow Diagram
- Capital & Operating Cost Breakdown of Equipment
- Economic Model / Levelized Cost Estimate
- Future work

High Molecular Weight PDMS - Background

- **Objective:** Lower the cost of capturing CO₂ from syngas
- Approach: Develop hydrophobic solvents for separation of CO₂ from warm syngas PDMS

PPGDME-branched or PPGDME-linear

PEGDME fully miscible with water; Extremely hydrophilic

absorbs ~2wt% water: separates slowly after shaking; Hydrophobic

PDMS-PEGDME hybrid absorbs <<1wt% water. Very hydrophobic

immiscible with water, even at 120C and 10000 psi; separates quickly after shaking; Extremely hydrophobic

The Solubility of Water in the Solvents

Background: Why Selexol must operate < 40°C

- Higher CO₂ and H₂S selectivity against H₂ at lower temperature
- <u>Constraint</u>: Selexol will absorb any remaining water in syngas

Water Remaining in Syngas vs. Temperature

Experimental Results

Selexol vs. Hybrid @25°C

- Hydrophilic
- Viscosity = 5.8 cP
- MW = 280
- Specific heat = 2.06 kJ/kg·K
- Density = 1030 kg/m³
- Thermal cond = 0.19 W/m·K
- Surface tension ~ 32 mN/m
- Vapor Pressure = 0.0007 mmHg
- CO₂/H₂ selectivity ~ 80

Hybrid PDMS-PEGDME

- Hydrophobic
- Viscosity = 4.8 cP
- MW = 438
- Specific heat = 1.77 kJ/kg·K
- Density ~ 936 kg/m³
- Thermal cond = TBD*
- Surface tension = 22.1 mN/m
- Vapor Pressure << 0.0007 mmHg
- CO₂/H₂ selectivity ~ 40

CO₂ Solubility in Hybrid-PDMS 25°C

H₂ Solubility in Hybrid-PDMS 25°C and 40°C

PDMS Scale up & NCCC Testing

- 8 L of Hybrid PDMS-PEGDME were synthesized at NETL and shipped to NCCC
- Hybrid solvent was tested for CO₂ solubility at 20°C and 40°C
- Solvent had tendency to foam and create fine aerosols at higher temperatures
 - Due to low surface tension, low viscosity, and low density
 - Increases absorber diameter, but can decrease height

Selexol vs. Ionic Liquid @25°C

<u>Selexol</u>

- Hydrophilic
- Viscosity = 5.8 cP
- MW = 280
- Specific heat = 2.06 kJ/kg·K
- Density = 1030 kg/m³
- Thermal cond = 0.19 W/m·K
- Surface tension ~ 32 mN/m
- Vapor Pressure = 0.0007 mmHg
- CO₂/H₂ selectivity ~ 80

<u>Ionic Liquid</u>

- Hydrophobic (0.23 wt% H₂O)
- Viscosity = 28 cP (wet)
- MW = 399
- Specific heat = 1.11 kJ/kg·K
- Density ~ 1515 kg/m³
- Thermal cond = TBD*
- Surface tension = TBD*
- Vapor Pressure <<< 0.0007 mmHg
- CO_2/H_2 selectivity ~ 150

*AspenPlus estimates that these values are 0.11 W/m·K and 68 mN/m, respectively

CO₂ Solubility at 25°C in different Solvents

H₂ Solubility at 25°C

System Modeling

System Modeling: Data Regression in Aspen Plus

- Data Regression to estimate the required pure and binary parameters
- Regression requires input of both thermodynamic & kinetic variable
- PC-SAFT method used for H-PDMS and Selexol
- ENRTL-RK method used for Ionic Liquid

System Modeling: Aspen Plus Modeling

 Model for Physical Solvent based CO₂ capture using flash regeneration adapted from MIT IGCC-Selexol capture Aspen Model

System Modeling: Aspen Plus Modeling

 Base Model for CO₂ capture using flash regeneration adapted from MIT IGCC-Selexol capture Aspen Model

Field and Brasington, "Baseline Flowsheet Model for IGCC with Carbon Capture," Ind. Eng. Chem. Res., 2011, 50 (19), p 11306.

Our Economic Model

- Economic Model Assumptions:
 - There is an existing IGCC Power Plant with H₂S Removal
 - 1 Years for Construction (for CO₂ Capture Equipment)
 - 30 Years of Operations with O&M = 4% of Capital per year
 - 80% Capacity Factor
 - 5% Inflation-Adjusted Interest Rate
 - Plant Cost Ratio = 5 = Total Capital Cost / Bare Equipment Costs
 - Bare Capital Cost estimates calculated from equations taken from various sources (Sieder Textbook, AspenPlus, IECM)
- Used to calculate the levelized cost of capturing CO₂
 - Levelized cost = Operating costs plus capital costs levelized per ton of CO₂ captured
 - Values are normalized compared with Selexol

Operating & Levelized Capital Cost Distribution Chart: Selexol

Comparison of Levelized Cost of Capture

Future Work

- Test Ionic Liquid Solvent at NCCC, and continue testing at NETL
- H₂S testing for both H-PDMS and Ionic Liquid
- Model both H-PDMS and Ionic Liquid in a full IGCC-CCS system model with two-stage H₂S/CO₂ removal
- Include H₂ & H₂O separating membrane upstream of twostage H₂S/CO₂ removal in order to potentially lower the levelized cost even further

Thank You

 Thanks to: NETL SCC, Sweta Agarwal, Hunaid Nulwala, Elliot Roth, Fan Shi, Wei Shi, Regina Woloshun, David Miller, Dave Hopkinson, Bob Enick, John Kitchin, and Dave Luebke

Back-up Slides

Glossary

PC-SAFT : Perturbed Chain statistical associating fluid theory NRTL: Non-random two-liquid ENRTL-RK: Electrolyte NRTL with Redlich Kwong vapor phase properties

System Modeling: Preliminary Results of Net Power Consumed

	Case 1	Case 2	Case 3	Case 4
Solvent Used	Selexol	Selexol	H-PDMS	H-PDMS
Model	Optimized	Optimized	Regressed & Optimized	Regressed & Optimized
Absorber Inlet Solvent Temp	10C	40C	10C	40C
Water Volumetric Flow Rate (kL/min)	3.05	2.35	0.08	0.05
Solvent Volumetric Flow Rate (kL/min)	88.20	143.58	101.60	205.45
Power Consumed (kJ/mol)				
CO2 LP Compression and Cooling Work	2.70	2.73	2.22	2.24
CO2 MP, HP Compression, Cooling & Pump Work	8.00	8.08	7.94	8.12
Solvent Pump Work	3.06	5.00	2.44	4.81
Chiller Compression and Cooling Work	1.95	0.33	2.02	0.31
Recycling Compression and Cooling Work	0.30	0.41	1.00	0.28
Energy Penalty due to CO2 exiting	19.00	19.00	19.00	19.00
Energy Penalty due to H2 exiting	0.73	0.34	0.75	1.48
Net Electricity /mol of captured CO2 (kJ/mol)	35.75	35.89	35.38	36.24

Change in CO₂ Bubble Point Pressure with Temperature for PDMS-PEGDME

Enick *et al.*, "Hydrophobic polymeric solvents for the selective absorption of CO_2 from Warm Gas Stream that also contain H₂ and H₂O," CCUS Conference, Pittsburgh, PA, May 15 2013

Change in H₂ Bubble Point Pressure with Temperature for PDMS-PEGDME

Enick *et al.*, "Hydrophobic polymeric solvents for the selective absorption of CO_2 from Warm Gas Stream that also contain H₂ and H₂O," CCUS Conference, Pittsburgh, PA, May 15 2013

PDMS Solubility using Raman: Dr. Kitchin CMU

200

180

160

Η,

 CO₂ and H₂ Raman spectroscopy can be used to determine solubility

Bare Equipment Costs: H-PDMS

Bare Equipment Costs: CO₂ Compression Cycle

Cost of LP Compressor and Intercooler: \$4.5M

Cost of MP, HP Compressors, Intercoolers and Liquid CO2 Pump: \$12.7M

Solvent Capture Capital Cost Distribution Chart: H-PDMS **WGS Capital Cost** 1.9% Absorber Chiller System 58.4% 22.6% Solvent based Recycle **CO2** Capture Compressor and Cooler **Capital Cost** 11.1% 10% Solvent Pump **Operating Cost Incurred** 2.5% **CO2** Compression due to lower power **Flash Units Capital Cost** 5.4% genreation 9.0% 35.4% Fixed O&M 13.6% **Solvent Based CO2** Compression CO2 Capture **Operating Cost Operating Cost** 18.8% 10% **Operating Cost Incurred** due to lost H2 1.4%

Levelized Cost Distribution Chart: H-PDMS

Levelized Cost Distribution Chart: H-PDMS

Normalized to **WGS Capital Cost** Note: Levelized Selexol, Solvent based 2.3% **CO2** Capture Cost at 40°C was **Levelized Cost** Capital Cost_ less than 10°C per CO₂ 10% Captured **CO2** Compression Capital Cost_ = 0.79 +/-0.04 10.9% Uncertainty reflects uncertainty in H₂ **Operating Cost Incurred** Solubility due to lower power genreation Fixed O&M 43.1% 11.3% **Solvent Based** CO2 Capture **Operating Cost** 10% **CO2** Compression **Operating Cost** 22.5% **Operating Cost Incurred** due to lost H2 0.2%

Levelized Cost Distribution Chart: NETL Ionic Liquid