

Combined Pressure and Temperature Contrast and Surface-enhanced Separation of Carbon-dioxide for Post-combustion Carbon Capture

DOE Project # DE0007531 Project Manager: Ms. Elaine Everitt

Dr. Michael S. Wong

Professor of Chemical and Biomolecular Engineering Rice University NETL CO₂ Capture Technology Meeting July 31, 2014

- □ Project Overview
- Project Budget
- Project objectives and technical approach
- Progress on process model to simulate gas/liquid flow and reaction in integrated CO₂ absorber/desorber
- Screening of metal oxide for CO₂ desorption/amine regeneration
- Summary and Conclusions

- □ Project funding under DOE agreement DE-FE0007531
- Total project cost \$960,811 over three years. Federal share:
 \$768, 647 | Non-federal share: \$192,164
- Contract awarded executed October 2011
- **Project duration**: 10/2011 3/2015
- Primary project goal : Performance of bench-scale R&D to demonstrate and develop Rice University's "combined pressure and temperature contrast and surface-enhanced separation of CO₂ for post-combustion carbon capture to meet DOE's goal of at least 90% CO₂ removal at no more than 35% increase in the cost of electricity"

Project Team

Project Director

Michael Wong Professor in Chemical & Biomolecular A J. Hartsook Professor in Chemical **Engineering & Chemistry**

Co-Project Investigator

George Hirasaki & Biomolecular Engineering

Co-Project Investigator

Kenneth Cox Professor-in-practice in Chemical and Biomolecular Engineering

Co-Project Investigator

Edward Billups Professor in Chemistry

Postdoctoral Associate

Zhen Wang PhD, Thermal Power Engineering (ZJU, 2014)

Postdoctoral Associate

Mayank Gupta PhD, Chemical Engineering (LSU, 2010)

Undergrad Researcher

Colin Shaw Chemical & Biomolecular Engineering

Past Members

Sumedh Warudkar PhD (April 2013)

Jerimiah Forsythe PhD, Chemistry (LSU, 2011)

Project Budget

Budget Period	Budget Period	Budget Period	Budget Period	
Object Class Category	1 (10.01.11 – 09.30.12)	2 (10.01.12 – 12.31.13)	3 (01.01.14 – 03.31.15)	Total
Personnel	\$134,079	\$180,738	\$113,637	\$428,454
Fringe Benefits	\$28, 586	\$40,953	\$29,811	\$99,350
Travel	\$4,700	\$4,700	\$4100	\$13,500
Equipment	\$27,035	\$O	\$O	\$27,035
Supplies	\$25,000	\$15,000	\$15,000	\$55,000
Contractual	\$0	\$O	\$0	\$0
Construction	\$0	\$0	\$0	\$0
Other	\$11,600	\$10,480	\$600	\$22,680
Total Direct Charges	\$231,000	\$251,871	\$163,148	\$646,019
Indirect Charges	\$102,094	\$127,045	\$85,653	\$314,792
Federal Share	\$243,621	\$327,568	\$197,458	\$768,647
Non-Federal Share	\$89,473	\$51,348	\$51,343	\$192,164
Total	\$333,094	\$378,916	\$248,801	\$960,811 ₅

Objectives

- Develop a CO₂ capture process that uses a single integrated unit that combines both the absorber and desorber columns
- Use waste heat for absorbent regeneration instead of lowpressure steam by operating the desorber section of the integrated unit under vacuum
- Develop a 2-D model to simulate the CO₂ absorption process, to test different configurations, and to optimize the material properties (i.e., pore-size distribution, aspect ratio, etc.)
- Reduce energy requirement by lowering the desorption temperature with the addition of a metal oxide

Technical Approach

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-ENHANCED SEPARATION OF CO₂

Advantages

- Reduction of space requirement and capital cost due to integration of absorber and desorber sections into a single unit
- Favorable characteristics for mass transfer because ceramic gas-liquid contactors have large geometric surface areas
- Cost saving and less energy requirement due to low desorption temperature:
 - Metal oxide catalyzes the desorption of CO₂
 - Moderate vacuum helps desorption to be carried out at reduced temperatures

Key milestones

- Progress on process model to simulate gas/liquid flow and reaction in integrated CO₂ absorber/desorber unit (COMSOL)
 - Pressure drop, flooding prediction in 1D model
 - CO₂ absorption performance prediction in 1D model
 - Gas/liquid flow simulation in 2D model
- Screening of metal oxides that can enhance CO₂ desorption from amine solution at lower stripping temperature

Experimental Setup for Pressure Drop in 1D Column

Material Properties

Advantages of ceramic foam:

- 1) Low bulk density and pressure drop
- 2) Very high geometric surface area and macro-porosity (80%-90%)
- 3) Regulated pore-size and ease of reproducibility of structure
- 4) Low pressure drop 5) High structural uniformity

Packing Type	Structure	Porosity (%)	S (m²/m³)	Bulk density (g/cm ³)	Equivalent Pore diameter (mm)	Permeability ^e (m²)
α-Al ₂ O ₃ Ceramic Foam	20-PPI ^a	85	700 ^b	0.60 ^d	1.28	8.0x10 ⁻⁹
	30-PPI	85	900 ^b	0.65 ^d	1.00	7.3x10 ⁻⁹
	45-PPI	84	1400 ^b	0.71 ^d	0.60	6.2x10 ⁻⁹
Random Packing ^c –	Raschig Ring	62.6	239	0.58 ^e	1.50	3.87x10 ⁻⁸
	Pall Ring	94.2	232	0.48 ^e	2.50	3.53x10 ⁻⁷

(a) PPI: Number of pores per linear inch length; (b) C.P.Stemmet,IChemE, 2006 (c) Jerzy Maćkowiak, IChemE, 2011 (d) www.ask-chemicals.com

(e) <u>http://www.tower-packing.com</u> (f) permeability of packing was calculated by $k = \frac{3\phi d_e^2}{50}$

 $\rho_i \nabla \cdot U_i = 0$

 $-\nabla \cdot p_{L} - \frac{\mu_{L}}{f_{L}K}U_{L} + \rho_{L}g\nabla D = 0 \quad \text{Darcy's Law}$ $-\nabla \cdot p_{G} - \frac{\mu_{G}}{f_{G}K}U_{G} + \rho_{G}g\nabla D = 0 \quad \nabla \cdot p_{G} = \nabla \cdot p_{L} \quad 13$

Predicted and Experimental Pressure Drops in 20ppi Ceramic Foam

Predicted and Experimental Drops in Ceramic foams

Packing Height: 30.5 cm Liquid phase: water @25 °C Gas Phase: air Liquid flow rate 50 mL/min

Flooding Point Prediction

Typical liquid holdup for different gas and liquid Reynolds numbers. (Stemmet et al. 2005)

Operating Zone in 20-PPI Ceramic Foam

Figures: Modelling results of the liquid holdup versus gas flow rate:

20-PPI ceramic foam; Packing Height: 30.5 cm; Liquid phase: water @25C; Gas Phase: air

CO₂ Absorption Experimental Setup-1D

Absorbent:

Aqueous Diglycolamine (DGA) 30 wt%

Structure:

 NH_2 **O**

Operating conditions:

Inlet CO_2 concentration: 13 v/v% Absorption temperature: 25 °C Ceramic foam: 20-PPI

Model Equations and Major Reactions

Mass Balance of Species i

$$\nabla \cdot (-D_i \nabla c_i + c_i U) = S_i$$

Given Source Terms for Gas Phase

$$S_i = -K_{ov}a_{eff} \left[\frac{C_{Gi}}{H_i} - C_{Li}\right]$$

Given Source Terms for Liquid Phase

$$S_i = K_{ov} a_{eff} \left[\frac{C_{Gi}}{H_i} - C_{Li} \right] - R_{ij}$$

$$S_j = -2R_{ij}$$

Main Kinetic Reactions

 $CO_{2} + OH^{-} \rightarrow HCO_{3}^{-}$ $HCO_{3}^{-} \rightarrow CO_{2} + OH^{-}$ $DGA + CO_{2} + H_{2}O \rightarrow DGACOO^{-} + H_{3}O^{+}$ $DGACOO^{-} + H_{3}O^{+} \rightarrow DGA + H_{2}O + CO_{2}$

Main Equilibrium Reactions

DGAH $^{+}$ + H $_{2}O \leftrightarrow$ DGA + H $_{3}O^{+}$ HCO $_{3}^{-}$ + H $_{2}O \leftrightarrow$ H $_{3}O^{+}$ + CO $_{3}^{-2}$

CO₂ Concentration Profile along Column under Different Liquid Velocities

Temperature Profiles with Changing Liquid Velocities

(constant gas flow rate 0.6 SLPM)

Experimental and Simulated CO₂ Removal Ratio (ceramic foam column= 20.4 cm)

Liquid phase: 30% DGA, Gas phase: 13% CO₂/87% N₂; Temperature: 25 °C

Experimental and Simulated CO₂ Removal Ratio (ceramic foam column= 10.2 cm)

Liquid phase: 30% DGA, Gas phase: 13% CO₂/87% N₂; Temperature: 25 °C

Prototype of Integrated CO₂ Absorber and Desorber Unit

Photograph of the experimental setup developed for the proof-of-concept demonstration

Representative of Liquid Phase Velocity and Temperature Profiles

Our Approach: Using Metal Oxides during Desorption

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-ENHANCED SEPARATION OF CO₂

Experimental Setup

- 15 mL of an amine solution preloaded with 0.3 mol CO₂
- To each solution, 1.5 g of MO_x powder added, 15 min equilibration
- N₂ bubbling through solution at 800 mL min⁻¹, temperature from 25 °C to 86 °C at 10 °C min⁻¹

Screening of Metal Oxides for CO₂ Desorption (MEA)

- WO₃, V₂O₅, and MoO₂ increased the release of CO₂ from MEA
- V_2O_5 and MoO_2 started desorbing CO_2 at 40 $^{\circ}$ C during the initial 15-minute equilibrium step
- WO₃ caused more CO₂ release than MEA only after 76 $^{\circ}$ C

Screening of Metal Oxides for CO₂ Desorption

MO _x (1.5 g)	Cumulative %CO ₂ released by 30 min at 86 °C	Cumulative %CO ₂ released by 60 min at 86 °C	Time (min), temperature (°C) of max CO ₂ release peak	IEP
MEA only	31.6	49.2	14, 84	N/A
WO ₃	34.7	60.0	13, 73	0.2 – 0.5
V_2O_5	45.8	69.0	10.5, 76	1 – 2
MoO ₂	65.8	76.2	10, 82	2.5
MnO ₂	29.8	46.8	15, 84	4 – 5
Cr ₂ O ₃	29.7	46.8	15, 84	7
α -Al ₂ O ₃	29.4	47.0	14, 84	8 – 9
Si ₃ N ₄	29.3	46.5	15, 84	9
MgO	13.7	22.3	13, 80	12 – 13

- No correlation between IEP and CO₂ desorption
- WO₃, V₂O₅, and MoO₂ caused CO₂ to desorb at lower temperatures than CO₂-loaded MEA solution
- WO₃ did not dissolve, which implies that ceramic foams made using WO₃ may be suitable in a stripper unit

Screening of Metal Oxides for CO₂ Desorption (Piperazine)

- No correlation between IEP and CO₂ desorption
- WO_3, V_2O_5 , and MoO_2 caused more CO_2 release than piperazine (PZ) only solution
- Similar to MEA, WO₃ did not dissolve in PZ.

Developed a process model to simulate gas/liquid flow and reaction in integrated CO₂ absorber/desorber unit

- Complete development of a 1D process model.
- Successful to predict pressure drop, flooding and CO₂ absorption in 1D ceramic foam column.
- Predicted fluid flow and temperature profiles of integrated absorber/desorber unit in 2D model

□ Screened various metal oxides for CO₂ desorption

- Metal oxides represent a new approach to reduce the desorption temperature
- Our process can potentially reduce the cost of existing amine-based CO₂ capture technology by addressing the major challenges due to high desorption temperatures. These challenges are- high energy requirement, degradation and evaporation of amine solutions

Research Tasks for 2014-15

□ Model combined absorber/desorber CO₂ separation process

- Continue the development of a 2-D model to simulate gas and liquid flow in the capture process and compare simulation results with experimental measurements
- Perform a sensitivity analysis and process optimization

Develop low temperature desorption zone

- Develop highly active and stable catalysts that can further lower the desorption temperature.
- Perform appropriate tests to examine the amine solutions after experiments to check for any degradation products.
- Design foams containing metal oxides
- Reduce the cost of existing amine-based CO₂ capture technology by addressing major challenges due to high desorption temperatures.

Complete an exergy (available energy) and techno-economic analysis and perform an EH&S assessment of the process

Acknowledgements

<u>Schlumberger</u>

Personnel

- •Dr. Joe Powell, Chief Scientist at Shell Oil Company
- •Dr. TS Ramakrishnan, Scientific Advisor at Schlumberger-Doll Research Center
- •Hirasaki Group & Wong Group members at Rice University

Additional Funding Support

- •Energy and Environmental Systems Institute (EESI) at Rice University
- •Rice Consortium on Processes in Porous Media
- Schlumberger

Material Properties of alumina membrane and polymer (PES) membrane

Porous Alumina Membrane			
Material	99.5 % (α-Al ₂ O ₃)		
Supplier	Refractron Inc., USA		
Dimensions	12" x 6 ″ x 1"		
Mean pore-size	19.3 um		
Permeability & Gas Entry Pressure	5.37 x 10 ⁻¹² m ² 0.8 psi (with water)		
Gas-Liquid Separator Polymer Membrane			
Material	Polyethersulfone (Hydrophilic)		
Supplier	Pall LifeSciences Corporation, USA		
Dimensions	8′′ x 8′′		
Mean pore-size	0.8 um		
Permeability & Gas Entry Pressure	0.32–1.52 10 ⁻¹² m ² 15-31 psi (with water)		