

Bench-scale Development of a Non-Aqueous Solvent (NAS) CO₂ Capture Process for Coal-fired Power Plants

DE-FE0013865

Luke Coleman
Program Manager, Carbon Capture
RTI International

July 30, 2014

www.rti.org

RTI International is a trade name of Research Triangle Institute.

Copyright © 2014 RTI. All rights reserved

RTI's Non-Aqueous Solvents (NASs)

Background

- In development since 2009
- Hydrophobic, sterically-hindered, carbamate-forming amines with low-water solubility solubilized in a diluent having low vapor pressure, low viscosity, and low-water solubility

- Low heats of absorption
- Generate high CO₂ partial pressures at low temperatures
- Potential to reduce the thermal regeneration energy to ~2,000 kJ₁/kg CO₂

Desirable Characteristics

- Low water solubility
- Favorable thermodynamics
- Low vapor pressure
- Low conductivity low corrosion rates
- Low oxygen solubility

Key Challenges

- Undesirable reactions with water
- Solids formation in rich solvent
- Water balancing
- Viscosity and foaming tendency
- Solvent cost and availability
- Emissions in process water and treated flue gas

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C)
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C)
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C) \
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C)
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C)
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

Measured Viscosity										
Sample Name	Viscosity [cP]	Temp [°C]								
NAC 1 CO Loop	4.5	40								
NAS-1, CO ₂ -Lean	1.6	80								
NAS-1, CO ₂ -Rich	20.7	40								
Gen2 NAS, CO ₂ -rich	9.34	40								

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C)
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

Key Achievements

- Work performed under a DOE/ARPA-E funded project
 - Project Partners: BASF
- Developed promising 1st-generation NAS formulations
 - Large working capacities with moderate temperature swing
 - Regenerable at low temperature (P_{CO2} > 2bar @ 90°C)
 - Heat of absorption: 55-75 kJ/mol CO₂
 - Low specific heat capacities: 1.2-1.5 kJ/kg K
 - Viscosity of CO₂-rich solvent < 30 cP; Non-foaming
- Patent Portfolio: 6 patents appl. filed; 1 granted to date
 - 3 formulation oriented
 - 3 process oriented
- Min. thermal regen. energy: 1,700-2,300 kJ/kg CO₂
- Preliminary T&E assessment indicate that parasitic energy penalty can be reduced by ~ 25-40%
- Experimental demonstration of NAS process concept
- Constructed bench-scale system to evaluate NASs

testing unit

NAS CO₂ Capture Process

Similar to conventional scrubbing systems with key design features:

- NAS Recovery and Wash Section Similar to water washing but NASs have low water-solubility
- Solvent Regenerator lack of low-boiling component (conv. reboilers not applicable)

RTI International

Lab-scale Testing

- Stable operation in a continuous flow system representative of a realistic process arrangement
- Evaluated/demonstrated key process concepts specific to NAS process
 - Water balancing; effectiveness of several regenerator types
- Compared performance of the NAS process and 30 wt% MEA-H₂O
 - Prelim. data indicates a 30-40% reduction in thermal regen. energy
 - Needs to be verified and validated at larger scale
- Evaluated the effect of long-term (>500 h) exposure to common flue gas contaminants

Project Overview

Continue advancement of the NAS CO₂ Capture Process by address specific challenges facing T&E potential

- refine solvent formulation to minimize solvent make-up and reduce solvent costs
- develop NAS-specific process modifications
- bench-scale demonstration of the potential to reduce the energy penalty to <2,000 kJ_t/kg CO₂
- understand potential for scale-up through T&E and EH&S assessments

Details

• **DOE Project #**: DE-FE0013865

Funding

• Total: \$3,099,080

• DOE: \$ 2,387,072

• Cost-share \$ 712,008

• Timeline: Oct. 1, 2014 to Dec. 31, 2015

• DOE Project Manager: Steven Mascaro

Project Team

- Inventor of non-aqueous solvent chemistry
- Lead bench-scale testing campaign to optimize process performance

- Global leader in gas separation & purification solutions
- Expertise in design, engineering, and operation of gas treatment processes
- Techno-economic and EH&S assessments of novel processes

Extensive experience in amine degradation & amine plant emissions

Current Project Efforts

Overall Goals

- Finalize NAS formulation down selection
- Develop NAS-specific process modifications
- Experimentally demonstrate, at the bench-scale, the potential to reduce the thermal regeneration energy to <2,000 kJ_t/kg of CO₂ captured

NAS Refinement

- Formulation refinement to reduce emissions in treated gas streams, lower solvent cost, and ensure availability while maintaining desired characteristics
- Measurement of kinetics and thermodynamics properties of 'best-candidate' formulations
- Detailed solvent degradation and emission studies [SINTEF / RTI]

Process Development

- · Develop model of NAS chemistry to support process development
- · Develop NAS Recovery/Wash section
- Develop optimized regenerator design specific for NAS processes [Linde / RTI]

Bench-Scale Evaluation

- Demonstrate efficacy of developed NAS-specific process modifications
- Demonstrate 90% CO₂ capture and high CO₂ product purity (>95% CO₂) at an "optimal"
 L/G ratio with a regeneration energy of < 2,000 kJ_r/kg of CO₂.

Technology Assessments

 Complete technical, economic, and EH&S assessments to determine competiveness, identify/address EH&S concerns, and determine 'permitability' of pilot and commercialscale units. [Linde / RTI]

Timeline and Milestones

	BUDGET PERIOD 1								BUDGET PERIOD 2															
		Q1			Q2			Q3			Q4			Q5			Q6			Q7			Q8	
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23 N	<i>1</i> 24
1 Project Management and Planning	Α		В																					
2 Refining Solvent Formulation to Minimize Make-up Costs									С															
3 Rate-based Model Development																								
4 Process Development									D			Ε												
5 Construction and Testing of Upgraded Bench-scale System															F			G						
6 Solvent Degradation Studies																								
7 Process Modeling																								
TEA and Technology EH&S Assessment of a Commercial NAS CO2 Capture Process																					н			I

	Task	Description	Date
Α	1	Update Project Management Plan	Q1
В	1	Complete Kick-off meeting	Q1
С	2.2	Final selection of 'best-candidate' NAS formulations made which achieves targets	Q3
D	4.1	Lab-scale demonstration complete which shows NAS Recovery System achieves targets	Q3
E	4.2	Design package and cost estimate complete for the Bench-scale system modifications	Q4

	Task	Description	Date
F	5.1	Complete installation/integration of new process units into bench-scale system	Q5
G	5.2	Effectiveness of bench-scale system modifications verified	Q6
Н	5.3	Data from bench-scale testing confirms that the NAS process can achieve target regeneration energy	Q7
1	8.1, 8.2	Complete technical, economic, and EH&S assessments	Q8

Bench-Scale Evaluation of NASs

RTI's Bench-scale Testing Unit

- Conventional Absorber-Regenerator design
- Flexible → Designed to operate with aqueous and non-aqueous solvents
- Column dim.: 3" dia. x ~ 35 ft total height (~ 28 ft packing)
- Commercial-grade structured packing: Mellapak 350.X
- Throughput: ~300 SLPM sim. flue gas (~120 kg/day CO₂)
- Solvent Inventory: 10-15 L
- Highly instrumented and easy to operate & control
- Capable of >90% CO₂ capture at realistic process cond.

Testing Program

- experimentally demonstrate that the NASs are capable of achieving 90% CO₂ capture and generating a high-purity CO₂ product (>95% CO₂) at an 'optimal' L/G ratio with a thermal regeneration energy of < 2,000 kJ_t/kg CO₂
- evaluate the effectiveness of the developed NAS Recovery/Wash section and Solvent Regenerator design, and
- develop a detailed understanding of the operational and performance differences between the NAS and conventional aqueous-amine CO₂ capture processes.

Solvent Degradation & Emission Studies

SINTEF

- largest independent research organization in Scandinavia
- more than 20 years of experience in research on amine based absorption processes
- extensive expertise in amine degradation and emission studies

Scope

- Estimate rate of solvent degradation and determine degradation pathways
- Determine the necessary flue gas pretreatment requirements specifically pertaining to SO₂ and NO_x
- Speciate and quantify emissions in treated flue gas stream
- Perform experiments in SINTEF's solvent degradation test rig (SDR) - a continuous flow system

NAS CO₂ Capture Process: Technology Roadmap

		eviou Vork		DOE ARPA-E Project		DOE NETL Project (Current)	Fu	ıture	e Developr	lopment			
Yr	20	09-1	09-10 2010-13 2014-15					2016	5-20	2020+			
TRL	1	2	3	4		5	6		7	8 & 9			

Proof of Concept/Feasibility

Lab-scale Development (*Previous*)

- · Solvent screening to identify promising solvent formulations
- Lab-scale evaluation of NAS Process
- Preliminary technical and economic assessments

Large Bench-scale System / Relevant Environment Testing (Current)

- Bench-scale testing with in a process unit with major process components
- Demonstrate ≤ 2 .0 GJ/tonne CO₂ using bench-scale system
- · Address process, environmental, and economic challenges
- · Detailed solvent degradation and emissions studies
- Detailed Techno-Economic & EH&S Assessments

Pilot-scale prototypical system demonstrated in a relevant environment (Future)

- Large pilot system (1-20 tonnes CO₂/day) using real flue gas and a complete process unit
- · Collect critical process information to support detailed T&E assessments and scale-up efforts

Pre-Commercial Demonstration

Acknowledgements

U.S. DOE/National Energy Technology Laboratory

- Steven Mascaro (NETL Project Manager)
- Jeffrey Kooser (NETL CS/CO)
- Lynn Brickett
- Mike Matuszewski

RTI Team

- Marty Lail
- Mustapha Soukri
- Paul Mobley
- Jak Tanthana
- Thomas Nelson
- Justin Farmer
- Chris Boggs
- Aravind Rabindran
- Markus Lesemann

Linde Team

- Krish Krishnamurthy
- Stevan Jovanovich
- Satish Tamhankar

SINTEF Team

- Andreas Grimstvedt
- Aslak Einbu
- Kolbjorn Zahlsen
- Solrun Vevelstad

