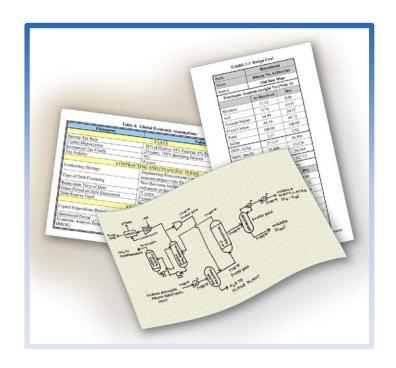


Techno-economic Evaluation of State-of-the-Art and Advanced Post-Combustion Capture Plants

Kristin Gerdes

Office of Program Performance and Benefits July 29, 2014


Outline

- Bituminous Baseline StudyRevision 3
- Clean Coal ResearchProgram Goal Review
- NETL Advanced Capture
 Technology Assessments

Acknowledgements

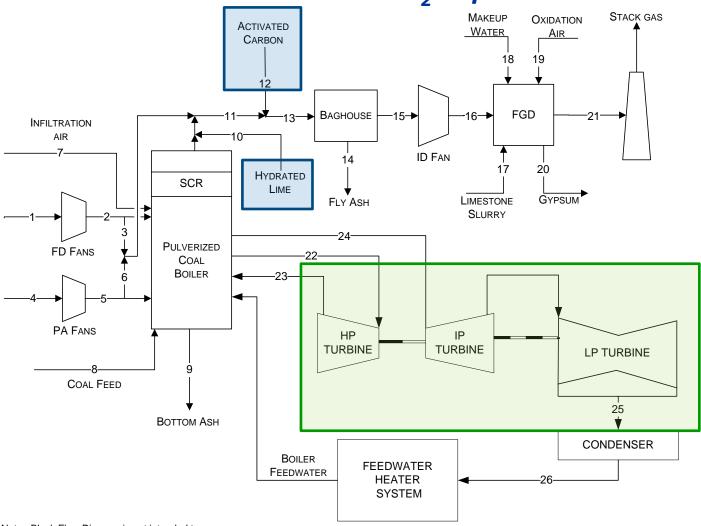
- DOE:
 - Tim Fout
 - Bob Stevens
 - Mike Matuszewski
 - John Wimer
 - Jim Black
- ESPA:
 - Mark Woods, Booz Allen
 - Marc Turner, Booz Allen
 - Dale Keairns, Booz Allen
 - Dick Newby, Booz Allen
 - Vasant Shah, Booz Allen
 - Worley Parsons

Office of Program Performance and Benefits

BITUMINOUS BASELINE STUDY REVISION 3

Update to the Bituminous Baseline Study Overview

<u>Full Title</u>: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 3, Fall/Winter 2014

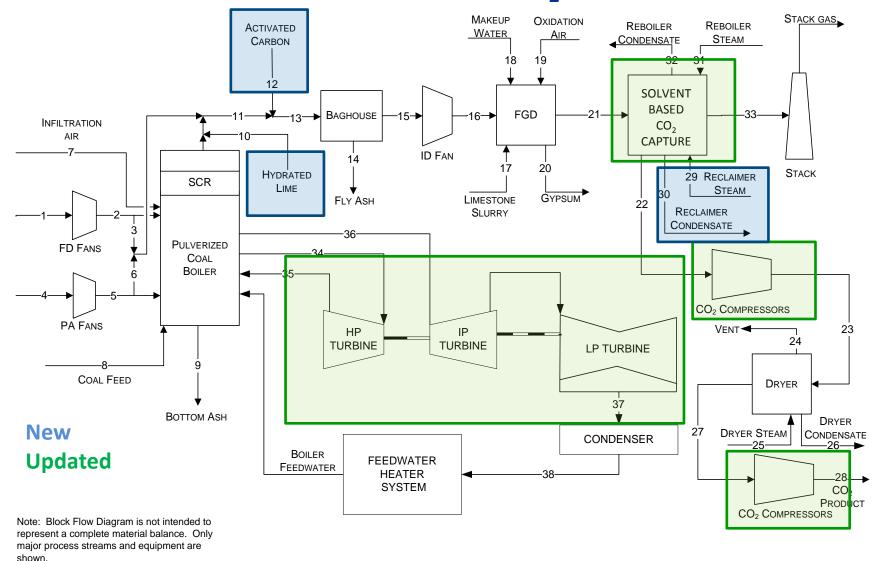

<u>Purpose:</u> to provide a basis for evaluation of advanced technologies on a consistent set of technical and economic assumptions

- Major change summary
 - Updated basis for performance and cost for CO₂ capture system, CO₂ compression,
 steam turbines, natural gas turbines
 - Update of all cases to 2011\$
 - Updated environmental control train to address EPA regulations
 - Updated tables to include additional data
 - New case numbering system (conforms with Low Rank study)
 - Minimal changes to IGCC cases (further updates coming soon!!)

Flowsheet Changes

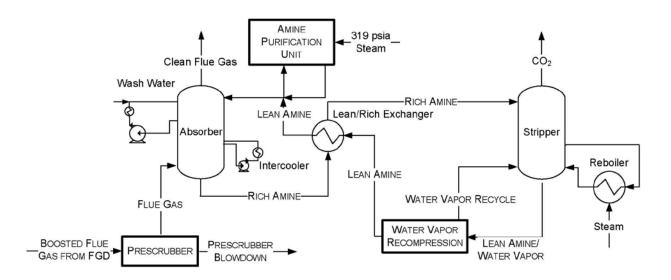
B11A and B12A - No CO₂ Capture

Note: Block Flow Diagram is not intended to represent a complete material balance. Only major process streams and equipment are shown.



New

Updated


Flowsheet Changes

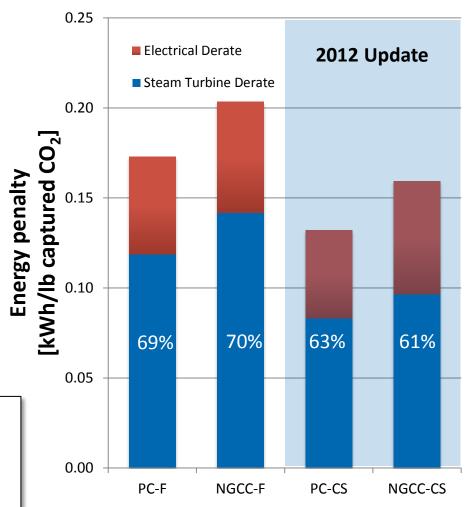
B11B and B12B – with CO₂ Capture

PC & NGCC Cases CO₂ Capture System

Amine-based capture system

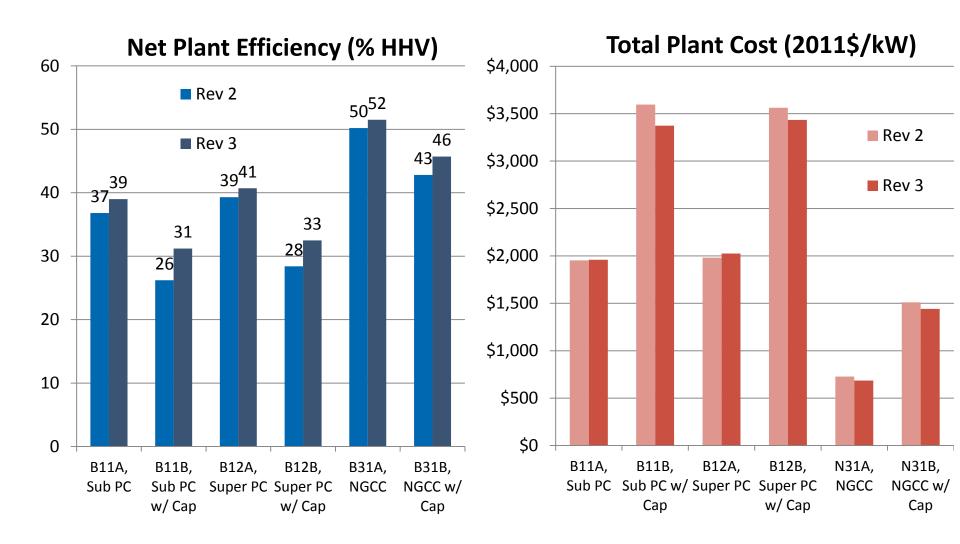
Features:

Absorber – acid brick lined concrete structure 90 % CO₂ Capture Pre-scrubber used in coal cases only



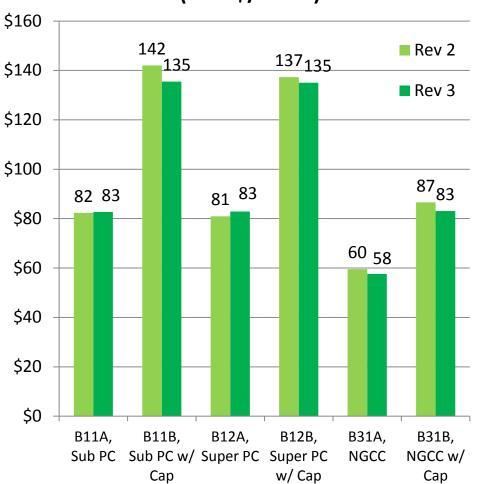
Baseline Greenfield Capture and Compression Technology Update

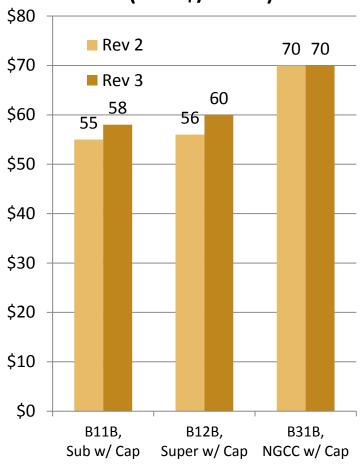
PC Plants	Quote Vintage	
Metric	2005	2012
Net Energy Penalty [kWhnet/lb CO ₂ Captured]	0.17	0.13
Reference Capital Cost [\$2011/tpd CO ₂ Capt. @ full load]	\$45,000	\$47,900
CO ₂ Capture Basis [tpd]	11,210	11,210


PC: ~25% reduction in regeneration energy penalty

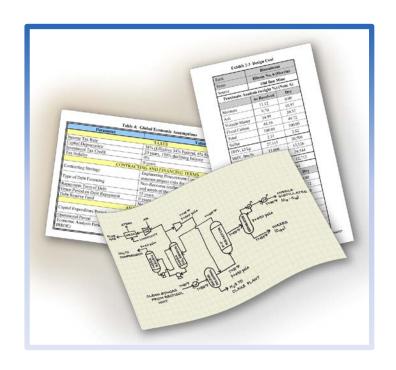
> NGCC: ~20% reduction in regeneration energy penalty

Bituminous Baseline Revision Comparisons

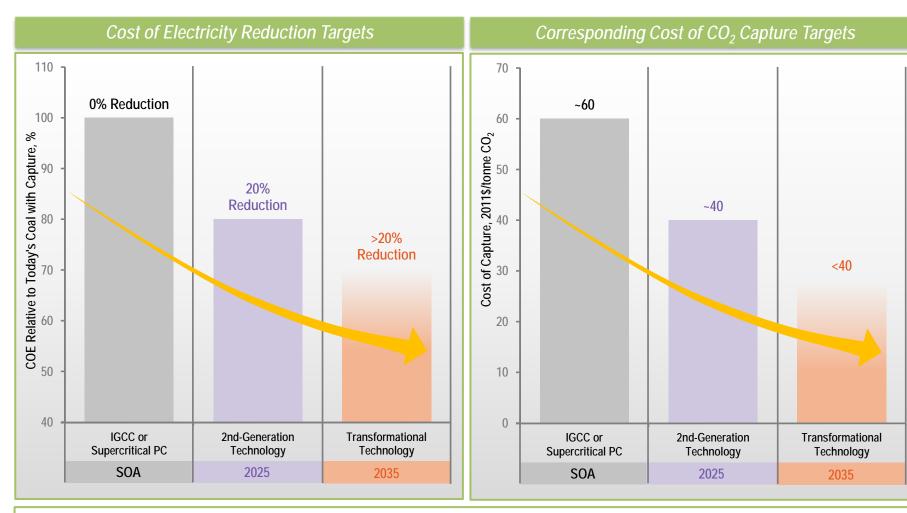



Bituminous Baseline Revision Comparisons

(con't)


Total COE w/o T&S (2011\$/MWh)

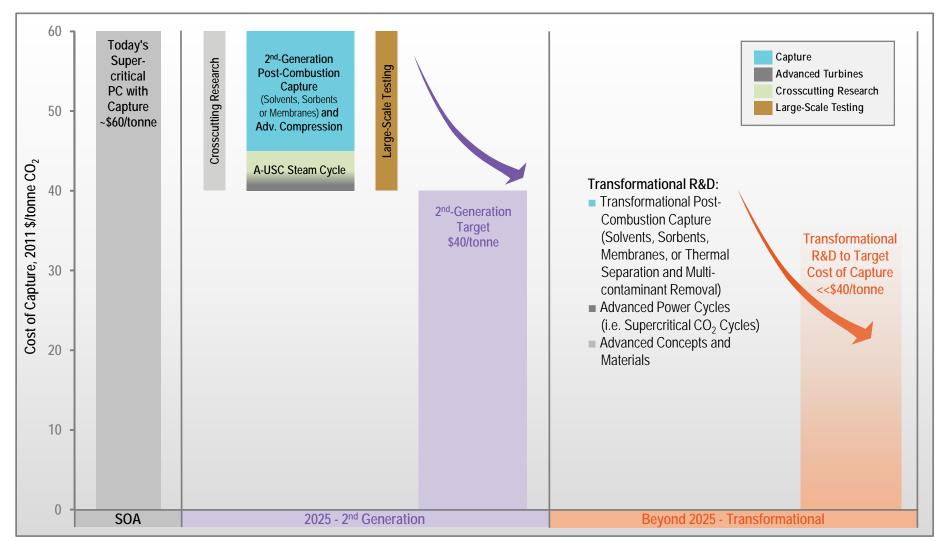
CO₂ Capture Cost w/o T&S (2011\$/tonne)


Office of Program Performance and Benefits

CLEAN COAL RESEARCH PROGRAM (CCRP) GOAL REVIEW

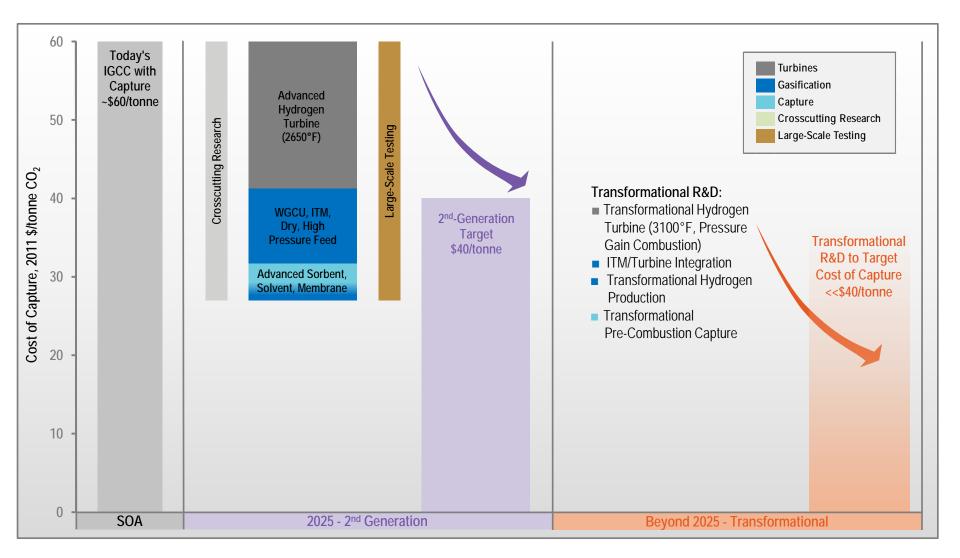
Clean Coal Research Program Goals

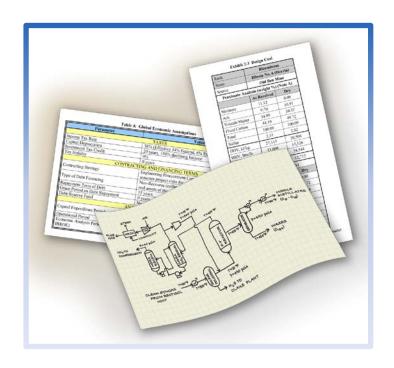
Driving Down the COE and Cost of CO₂ Capture of Coal Power with CCS



Goals shown are for greenfield plants. Costs are nth-of-a-kind, are for the first year of plant operation, and include compression to 2215 psia but exclude CO₂ transport and storage costs. Today's capture costs are relative to Today's SCPC without CO₂ capture. 2025 and 2035 capture costs are relative to an A-USC PC without CO₂ capture.

R&D Driving Down the Cost of CO₂ Capture


Greenfield Post-Combustion Capture Plants



R&D Driving Down the Cost of CO₂ Capture

IGCC with Pre-Combustion Capture

Office of Program Performance and Benefits

ADVANCED CAPTURE TECHNOLOGY ASSESSMENTS

NETL/OPPB Advanced Capture Ongoing Analyses

- "Current and Future Technologies for Post-Combustion Capture" i.e. PCC Pathway Study
 - Coal Update to 2011 dollars; preliminary consideration of CO₂
 purification
 - NGCC In progress
- Screening studies (pre- and post-combustion capture)
 - Solvents
 - Sorbents
 - Membranes
 - Internal and external
- R&D Guidance for Post-Combustion Capture Techno-Economic Evaluations

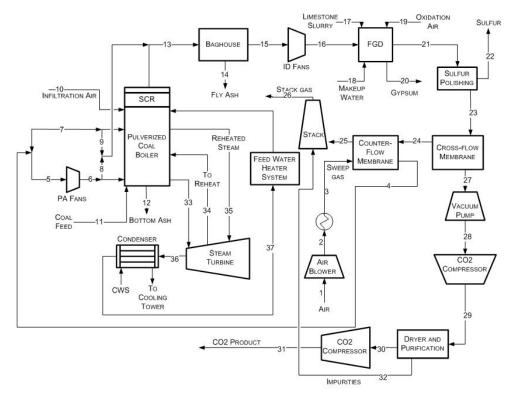
PCC Pathway Study

Objectives & Scope

Objectives:

- Develop technology pathways that feature post-combustion CCSenabled PC plants that achieve DOE goals
- Utilize the pathway studies to inform technology development though identification of performance and cost targets

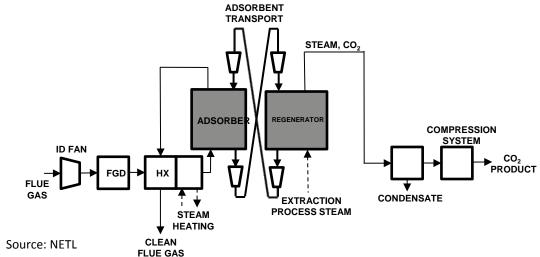
Technologies included:


- 2nd-generation post-combustion CO₂ capture
- Adv. Ultrasupercritical (A-USC steam) conditions (5000psig/1350F/1400F)
- Advanced CO₂ compression

• Scope:

- Pathway begins with 1st generation supercritical PC plant with today's post-combustion capture technology
- Emerging technologies added based on mature stage of development, thus simulating "nth-of-a-kind" plant performance and cost
- 2nd-generation post-combustion CO₂ capture and compression cost and performance adjusted to meet program goals

PC with Adv. Membrane – Example to Meet Goals

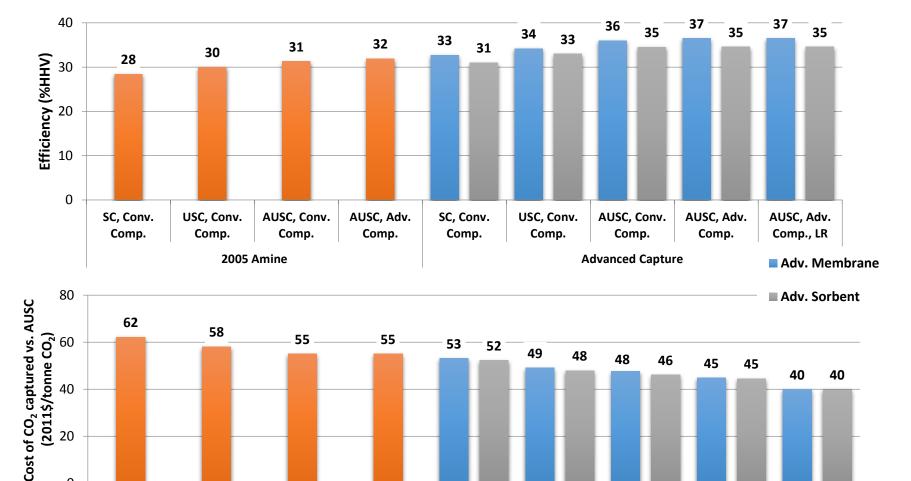

Key Membrane Parameter Assumptions

- CO₂ and SO₂ Permeance: 3,500 gpu
- N₂, O₂, Ar Permeance: 100 gpu
- H₂O Permeance: 5,000 gpu
- Pressure drop: 1.0 psi (flue gas and sweep sides)
- Vacuum pump achieves 0.2 bar pressure
- Membrane replacement time 5 years
- Membrane surface area: 1,500,000 m²
- Membrane installed cost \$127/m²
- Membrane replacement cost \$17/m²

Capture/Compression Impact	Amine Quote Vintage		Adv.
Metric	2005	2012	Membrane
Net Energy Penalty [kWhnet/lb CO ₂ Captured]	0.17	0.13	0.11
Reference Capital Cost [\$2011/tpd CO ₂ Capt. @ full load]	\$45,000	\$47,900	\$39,100
CO ₂ Capture Basis [tpd]	11,210	11,210	11,185

PC with Adv. Adsorbent – Example to Meet Goals

- The adv. sorbent process requires considerable extraction steam consumption for flue gas heating and for adsorbent regeneration (> 1x10⁶ lb/hr) and large BFW makeup treatment system
- The reaction vessels are very large and mechanical adsorbent circulation is used for the large adsorbent circulation rate required (> 31 x 10⁶ lb/hr)


Key Adsorbent Parameter Assumptions

- Adsorbent: alkalized alumina; 3/8 inch diameter spheres
- Adsorbent cost: \$5/lb
- Sorbent CO₂ loading: 3.0%
- Adsorber and regenerator temperature:
 140°C
- Adsorber and regenerator pressure drop: 0.4 psi
- Adsorbent entrains 1.0 wt% of inlet N₂,
 O₂ and water vapor to the regenerator
- Regenerator off-gas: 50 mole % CO₂
- Adsorber-regenerator type: Moving bed
- Adsorbent transport: Bucket conveyorelevators

Capture/Compression Impact	Amine Quote Vintage		Adv.
Metric	2005	2012	Sorbent
Net Energy Penalty [kWhnet/lb CO ₂ Captured]	0.17	0.13	0.13
Reference Capital Cost [\$2011/tpd CO ₂ Capt. @ full load]	\$45,000	\$47,900	\$37,700
CO ₂ Capture Basis [tpd]	11,210	11,210	11,349

PCC Pathway Efficiency and Cost of Capture

SC, Conv.

Comp.

USC, Conv.

Comp.

AUSC, Conv.

Comp.

Advanced Capture

AUSC, Adv.

Comp.

NOTES:

0

SC, Conv.

Comp.

USC, Conv.

Comp.

•Amine-based cases are consistent with NETL Bituminous Baseline Rev. 2 Report

AUSC, Conv.

Comp.

2005 Amine

•All membrane and sorbent-based cases utilize enhanced performance and cost parameters

AUSC, Adv.

Comp.

AUSC, Adv.

Comp., LR

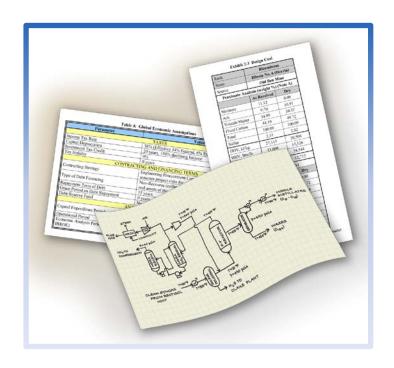
CO₂ Purification

- Purification of the CO₂ product stream will likely be necessary for most end-uses
- Preliminary evaluation of refining CO₂
 purification to PCC Pathway cases
 - CO₂ purity prior to purification: 92-97%
 - Impact using external refrigeration cycles
 - Efficiency reduction ~2% points
 - COE increase 8-10%
- Other potential purification options:
 - Auto-refrigeration cycles
 - Membranes
 - Other capture process optimizations

Purity Specifications		
CO ₂	≥ 95 vol%	
O ₂	10 – 100 ppmv	
H ₂ O	500 ppm	
N ₂ , Ar, CH ₄ , H ₂	1 – 4 vol%	
СО	35 ppm	
H ₂ S	75 – 100 ppmv	
SO ₂	50 – 100 ppmv	
etc.		

Current and Future Technologies for Post-Combustion Capture: NGCC

- Objective: Evaluate impact of advanced CO₂ capture technologies in an NGCC plant
- Preliminary conclusions:
 - Sorbents and membranes more sensitive to lower CO₂
 concentration of NGCC flue gas (~4% vs. ~14% for PC) than solvents
 - Exhaust gas recirculation (EGR) key to increase CO₂
 concentration in flue gas for sorbents and membranes



Advanced Capture Technology Screening Studies

Post-combustion capture solvents:

- Model/predict process improvements that are applicable to many capture technologies:
 - L/R exchanger temperature approach
 - CO₂ Stripper regen pressure
 - Advanced heat integration schemes
- Forecast potential of combining advanced capture technologies with advanced processes
- Pairing of post-combustion capture technologies
 - e.g. solvents and membranes
- Pre-combustion capture sorbents/membranes:
 - Pairing with advanced gas cleanup systems and CO₂ purification systems
- NETL may contact you with requests for details about your project (i.e., design and/or performance aspects)

Office of Program Performance and Benefits

QUESTIONS?

