Sorbent Based Post-Combustion CO$_2$ Slipstream Testing
Project # DE-FE0012870

Jeannine Elliott
Girish Srinivas
Bob Copeland

2014 NETL CO$_2$ Capture Technology Meeting
July 29, 2014

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com
Project Overview

DoE Project DE-FE0012870

Funding - Total Project $5,880,378

- DOE: $4,704,509
- Cost Share: $1,175,868

Project Dates

- April 1, 2014 to December 31, 2017
Technology Background & Approach
TDA’s Approach

- TDA Research has developed:
 - A solid alkalized alumina adsorbent, and
 - An CO₂ capture process designed around this process

![Image of adsorbent material]

Diagram:

- Adsorber
- Regenerator
- Flue gas
 - 1 atm, ~130 to 180°C
- Low CO₂ flue gas
- Regeneration outlet With CO₂
- Sorbent circulation
- Low Pressure Steam
TDA’s Post Combustion CO$_2$ Capture

- **Process advantages:**
 - An inexpensive, durable sorbent
 - Regenerates with low pressure steam
 - Operates at near isothermal conditions
 - Does not require heat recovery from solids
 - Extremely low heat of adsorption
 - Uses counter-current operation to:
 - Maximize capture efficiency
 - Maximize sorbent loading
Process Design

- Multiple Fixed Bed Contactor
 - Provides counter-flow contact between the solids and gases
- Beds cycle between adsorption and regeneration functions
- Gas flows in series across regeneration beds
- Multiple fixed beds are flexible and can allow demonstration of multiple process design configuration.

This slipstream project builds on previous DoE funded research

Contract #DE-NT0005497
Continuous Operation

- Demonstrated continuous CO$_2$ capture in 8 bed bench-scale unit in field testing with coal gas at Western Research Institute
- Slipstream project builds on previous DoE funded research
 - Contract #DE-NT0005497
Slipstream Testing

- **Project Goal:** Demonstrate TDA’s sorbent technology under realistic conditions at 0.5 MW_e (~10 tpd) scale to collected data necessary for scale up to next level plant.

- Design, construction, and operation of slipstream test unit to capture CO_2 from flue gas at the National Carbon Capture Center (NCCC)
Project Scope
Project Schedule

• Budget Period 1: Design
 • April 2014 to June 2015

• Budget Period 2: Construction & Installation
 • July 2015 to Sept 2016

• Budget Period 3: Operation
 • Oct 2016 to Dec 2017
Budget Period 1
Budget Period 1 Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
<th>Finish</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apr</td>
<td>May</td>
</tr>
<tr>
<td>1</td>
<td>Task 1. Project Management</td>
<td>4/1/2014</td>
<td>6/1/2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Milestone 1-1: PMP</td>
<td>5/1/2013</td>
<td>5/15/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Task 2. Preliminary TEA Case 1-4</td>
<td>4/1/2013</td>
<td>11/15/2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Milestone 2-1: Preliminary TEA Case 1</td>
<td>7/1/2014</td>
<td>7/1/2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Task 3.2. Basic Process Specific. & Design</td>
<td>5/1/2013</td>
<td>11/1/2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Task 4.1 Pilot Plant Detailed Engineering</td>
<td>11/15/2014</td>
<td>5/1/2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Task 4.2 EH&S Assessment</td>
<td>1/1/2015</td>
<td>3/31/2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Milestone 4-1: Pilot Unit design</td>
<td>5/15/2015</td>
<td>5/15/2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Task 5. Determine Construction Cost</td>
<td>5/2/2015</td>
<td>6/15/2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Milestone 5-1: Submit Design Package</td>
<td>6/30/2015</td>
<td>6/30/2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Milestone 5-2: Year 1 Annual Review</td>
<td>6/30/2015</td>
<td>6/30/2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Go/No go Decision Point</td>
<td>7/1/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Budget Period 1 Tasks

- **Task 1: Project Management**
- **Task 2: Preliminary Techno-Economic Analysis**
 - Based on integration with a nominal 550 MW_e greenfield supercritical plant
- **Task 3. Pilot Plant Design Optimization and Basis Design**
 - Process experiments to finalize process design
 - Basic process specification and design
- **Task 4. Pilot Plant Detailed Design and Engineering**
 - Design a 0.5 MW_e pilot plant to capture 10 tons per day of CO_2,
 - Perform an initial Environmental, Health and Safety (EH&S) study
 - Hazard Review with NCCC
- **Task 5. Determine Slipstream Unit Construction Cost**
 - Develop a firm cost estimate for the slipstream unit
Preliminary Techno-Economic Analysis

- Integration with greenfield supercritical 550 MW coal fired power plant
 - Cost and Performance Baseline for Fossil Energy Plants (Black 2010) Case 12
 - Analysis will follow DoE guidelines

- Work being performed by University of California at Irvine (UCI)
Economic Analysis

- Total of four cases will be studied as part of the TEA
 - Baseline Case 1 run initially
 - Three additional cases will be evaluated for optimization
- TEA economic analysis is underway
Slip Unit Design Data

- Collect experimental data needed to design pilot plant unit
- Characterize breakthrough performance and pressure drop considerations
 - Evaluate different pellets sizes
- Conduct process optimization in bench-scale unit to determine optimum flow/cycling logic for pilot plant
Effect of Pellet Size

- Breakthrough curves measured for two different sized pellets
 - Maintained same space velocity
- No loss in performance with 1/8” pellet size compared to 1/16” pellets
CO₂ Product Purity

- Evaluated of composition of regeneration product gas
 - Measured by GC
- Average CO₂ out meets 95% purity standard
Kinetic Studies

• Performance as a function of space velocity
 • Future studies to evaluate regeneration and adsorption side separately
Process Design Optimization

• Underway to modify existing bench-scale unit to mimic design to be constructed
• New system will have additional dedicated beds for purge between adsorption and regeneration steps
• Collect data to evaluate trade-off of adding beds and performance recycles/purge steps
Slipstream Unit Test System

- Adsorption, regeneration and purge beds
- Each stage operates for a full cycle
 - Current unit has some stages operating for a fraction of a cycle
Slipstream Unit Design

- 0.5 MW_e Skid mounted system
- Adsorber/Regeneration Contractor is a multiple fixed bed unit
 - Beds switch between adsorption, regeneration, purge operations
- Sorbent is regenerated by steam
- Adsorber/Regenerator operates near isothermal (adiabatically) at 140 to 160°C with about 17 psia steam
- Operation pressure is near atmospheric pressure
- Slipstream unit includes adsorber/regeneration beds, heat exchangers, blower
Pilot Plant Engineering Design

• Budget Period 1 will determine cost to construct Slipstream Unit
 • Final Process Flow Diagram, General Arrangement Sketch, Elevation Sketch

• Hazard analysis to be conducted per NCCC requirements

• Estimated CO$_2$ delivery conditions: pressure, temperature, flow rate, and gas composition

• Startup, steady-state operation, and shut-down procedures

• Sorbent disposal plan
 • to be disposed of by NCCC
Budget Periods 2 & 3
Budget Period 2 Tasks

Budget Period 2 July 2015 to Sept 2016

- Scale-up production of the sorbent
- QA/QC testing of sorbent at TDA
- Fabricate the sorbent bed vessels for the pilot plant and other modules
- Finalize Test Plan
 - Operating conditions and key parameter parametric conditions selected
 - Operator training
- Integrate the unit at the NCCC.

6. Sorbent Production Scale-up and Assurance

- Scale-up production of the sorbent to 5 tons
- Sorbent production will be coordinated with industry partner Clariant, formerly Sud Chemie, can produce sorbent
- Sorbent is alkalized alumina - not exotic material
- Sorbent QA/QC testing at TDA in bench-scale unit
- Sorbent will be tested under proposed test conditions
- Evaluation of optimum steady state conditions

7. Procurement and Fabrication of

- Fabricate the adsorber/regeneration sorbent vessels for the pilot plant
- Procure/fabricate of heat exchangers and blower skid mounted units
Budget Period 3 Tasks

Budget Period 3 Oct 2016 to Dec 2017

• Demonstrate this process in slipstream testing at the NCCC under both parametric and steady state conditions using coal derived flue gas.
• Update the Techno-Economic Analysis and finalize the EH&S assessment.
• Data from the pilot plant test will be used to develop recommendations for the next level of scale up.
Summary

• Slipstream testing will assess and demonstrate technical viability of this CO$_2$ capture approach
• 0.5 MW slipstream testing at NCCC
• Technical Experimental work in progress to design optimal slipstream unit
• Initial TEA in in progress
TDA Research Inc.
Privately Owned/Began operations in 1987
80 Full-time technical staff
Located just west of Denver, CO