

Development of Mixed-Salt Technology for CO₂ Capture from Coal Power Plants

FE0012959

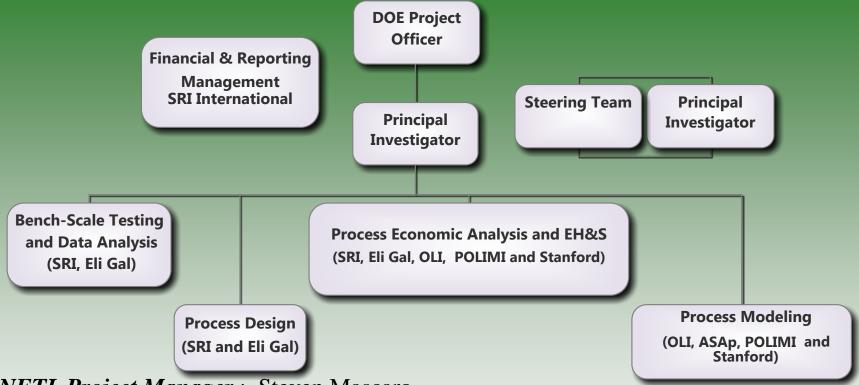
Presented By Indira S. Jayaweera SRI International CA, USA

2014 NETL CO2 Capture Technology Meeting July 28-August 1, Pittsburgh PA

© 2014 SRI International

Project Goals

Overall Project Goal is to demonstrate that Mixed-Salt technology can capture CO_2 at a 90% efficiency and regenerate at 95% CO_2 purity at a cost of \$40/tonne or less of CO_2 captured by 2025.


Budget Period 1:

• Demonstrate the absorber and regenerator processes individually with high efficiency and low NH₃ emission and reduced water use compared to the state-of-the-art ammonia-based technologies.

Budget Period 2:

- Demonstrate the high-pressure regeneration and integration of the absorber and the regenerator
- Demonstrate the complete CO₂ capture system with low cost production of CO₂ stream, optimize the system operation, and collect data to perform the detailed Techno-Economic analysis of CO₂ capture process integration to a full-scale power plant.

Project Team and Organization

<u>NETL Project Manager</u>: Steven Mascaro

Project Team and Technical Leaders

SRI- Indira Jayaweera; **OLI Systems** (OLI)- Andre Anderko; **Stanford University** - Adam Brant; **Aqueous Systems Aps** (ASAp)- Kaj Thomsen; **Politechnico De Milano** (POLIMI)- Gianluca Valenti; and Eli Gal

© 2014 SRI International

Project Budget

	Budget Period 1	Budget Period 2	Total
	10/1/13 - 12/30/14	1/1/15 - 3/31/16	10/1/13-3/31/16
Total Project Cost	\$1,019,650	\$1,102,092	\$2,121,742
DOE Share	\$819,534	\$878,113	\$1,697,647
Cost-Share	\$200,116	\$223,979	\$424,095

Cost Share by SRI, OLI Systems, POLIMI, Aqueous Solutions Aps, Stanford University IHI Corporation

Mixed-Salt Technology Facts and Benefits Technology uses potassium and ammonium salts

- Uses inexpensive, industrially available material
- Requires no feed stream polishing
- No hazardous waste generation
- Has a potential for easy permitting from many localities
- Uses known processes engineering

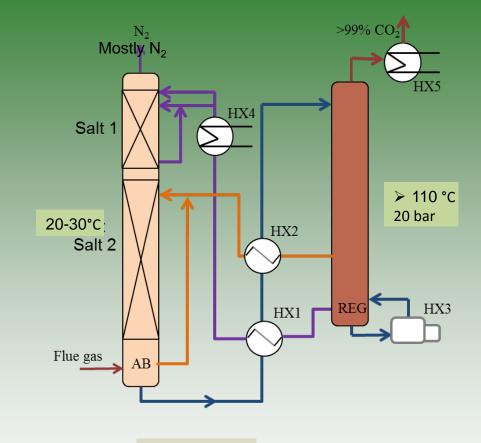
Compound	MW (g)	Moles in kg of 30 wt.% solvent	
MDEA	119	2.5	
MEA	61	4.9	
NH3 (20 wt.%)	17	8.8	
K2CO3	138	2.2	
Piperazine	86	3.5	

NO SOLIDS

Enhanced capture rates

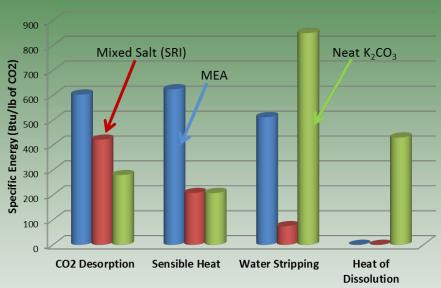
High CO₂ loading capacity

Produces clean CO_2 stream at high pressure \rightarrow reduced compression costs


Reduced energy consumption compared to MEA Reduced auxiliary electricity loads

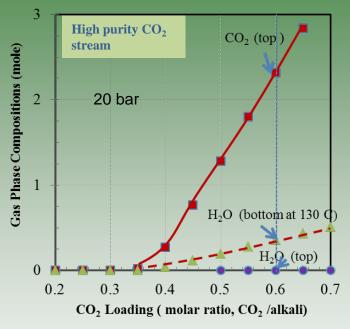
Challenge:

Reduction of ammonia evaporation at higher reaction rates


Mixed-Salt Technology Process Conditions

- Process uses mixtures of potassium carbonate and ammonium salts
 - Dual absorber, and a selective regenerator
 - Heat of reaction 35 to 55 kJ/mol
- Absorber operation at 20° 30°C at 1 atm with 20-30 wt.% mixture of salts
- Regenerator operation at >110°C at 20-40 atm
 - Produce high pressure CO₂

CO₂ Lean
$$CO_2$$
 Rich CO_3 -NH₃- x CO₂-H₂O system \longleftrightarrow K₂CO₃-NH₃- y CO₂-H2O system CO_3 -NH₃- V CO₃-NH₃- V CO₃- V CO


Mixed-Salt: Reduced Energy Requirement for Solvent Regeneration

Estimated regenerator heat requirement for Mixed-Salt system with 0.2 to 0.6 cyclic CO_2 loading. Comparison with neat K_2CO_3 and MEA is shown

Sources: MEA Data: CSIRO Report (2012). EP116217 K₂CO₃ Data: GHGT-11; Schoon and Van Straelen (2011). TCCS-6

Mixed-Salt Data; SRI Modeling

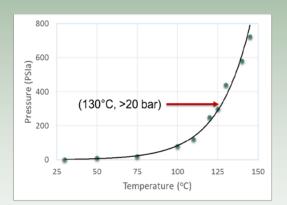
Mixed-Salt process requires a minimal energy for water stripping

Mixed-Salt Development Time Line

Proof of Concept (6 slph)

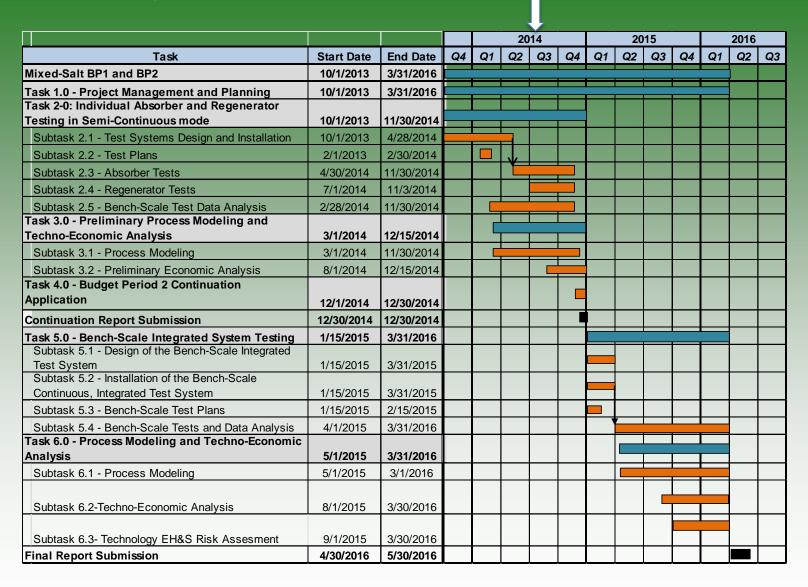
2012

Small Bench-Scale Testing (50 *slpm* or 1.7 *acfm*)


2013

Current DOE Project

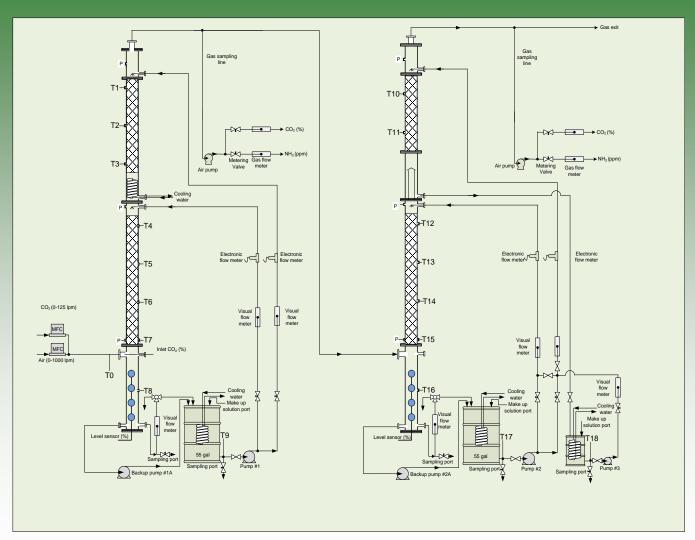
Large Bench-Scale Testing (>500 *slpm*) 10/2013 – 3/2016


Results from small bench-scale testing 3.0 2.5 Mixed-salt 2.0 1.5 0.32 Loading 15 vol% CO₂ 1.0 $T = 25^{\circ}C$ 0.37 Loading 0.5 MEA 0.0 25 30 35 0 10 15 20 40 Starting Absorbent Weight Percent


Attainable CO₂ pressure during solvent regeneration: Mixed-salt with CO₂ loading value of 0.6 CO₂/salt

No thermal or oxidative degradation of mixed-salts in the regenerator.

DOE Project Schedule



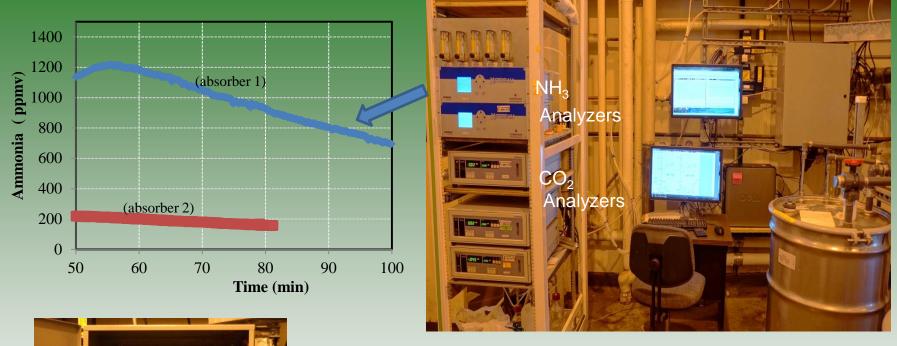
Regenerator System

10

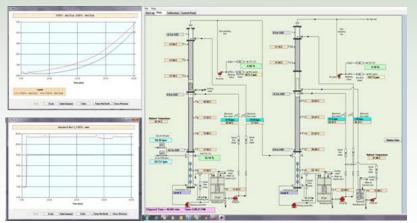
Schematic of the Absorber System

11

Photographs of the Completed System

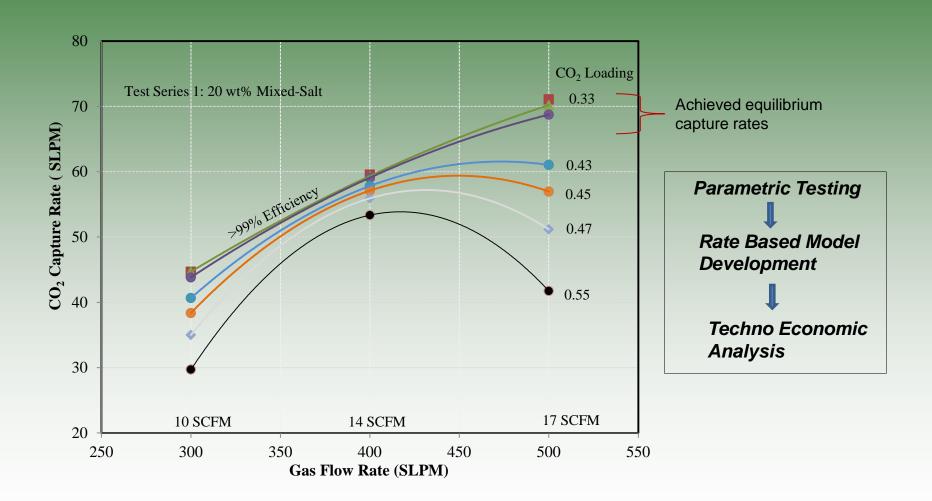


Mixed-Salt System Commissioned on May 29, 2014



Process Control And Monitoring

Data acquisition and control hardware interface



Online data monitoring

Absorber Data with 20 wt% Mixed-salt at 20°C: Mass Balance

Absorber Data with 20 wt% Mixed-salt at 20°C: CO₂ Capture Rate

Project Status as of July 15, 3014

- Program Management Plan Updated
- Design and Installation of Absorber Completed
- Regenerator modification and Installation Completed
- Absorber Testing in progress
- Modeling:
 - VLE model update for K₂CO₃-NH₃-CO₂-H₂O completed
 - Power cycle integration for reference plant completed (good agreement with NETL model)

Project Location

SRI's site in Menlo Park, CA (~ 65 acres)

SRI also has a test site near Livermore, CA (480 acres)

Acknowledgements

- NETL: Steven Mascaro and Lynn Brickett
- SRI Staff:
 - Palitha Jayaweera, Regina Elmore, Jianer Bao; Srinivas Bhamidi, Bill Olsen,
 Robert Bell, David Thibert, Paul Zuanich, Gopala Krishnan, Marcy Berding,
 Kelli Connolly, Karen Withington.
 - Chris Lantman, Barbara Heydorn, Rachel Stahl, Michele Lefevre, and Lauren May.
- Subcontractors and Cost Sharing Partners:
 - OLI Systems, Stanford, ASAps, POLIMI, IHI Corporation
- Consultant:
 - Eli Gal

© 2014 SRI International

Disclaimer

• This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Technical Contact:

Dr. Indira Jayaweera, Sr. Staff Scientist and Program Manager lndira,jayaweera@sri.com 1-650-859-4042

Contractual Contact:
Ms. Rachel Stahl, Division manager of Contracts
Rachel.Stahl@sri.com
1-650-859-2004

Thank You

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff 201 Washington Road Princeton, NJ 08540 609.734.2553

Additional U.S. and international locations

www.sri.com