Pilot Plant Testing of Piperazine (PZ) with High T Regeneration

Gary T. Rochelle (PI) & Eric Chen
The University of Texas at Austin

Katherine Dombrowski (PM), URS

Andrew Sexton (TE), Trimeric

Bruce Lani, DOE PM
Objective is to demonstrate PZ with advanced regeneration at 150°C in coal-fired flue gas

| PZ | • Optimize process
<table>
<thead>
<tr>
<th></th>
<th>• Demonstrate solvent robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regeneration</td>
<td>• Advanced flash stripper (AFS)</td>
</tr>
</tbody>
</table>
| Aerosols | • Formation and characterization
| | • Control |
Phased testing at UT SRP and NCCC to optimize PZ absorption/regeneration

- **SRP 2011**: 2SF, 8m PZ (Completed)
- **SRP 2013**: 1SF, 5m PZ, Aerosol (Completed)
- **SRP 2014**: AFS, 5 vs 8m, Aerosol (In Progress)
- **NCCC 2016**: AFS, Aerosol (Pending SRP 2014 Results)

CO₂ in air: 0.1 MW, 0.5 MW Flue gas
Budget Period 1

$1.65 M Federal Share
$0.92 M Cost Share
$ 2.57 M Total BP1

Cost share by CO$_2$ Capture Pilot Plant Project (C2P3)
5m Piperazine is a Superior Solvent
Solubility Window for 5 m & 8 m PZ

CO₂ loading (mol/mol alkalinity)

Transition T (°C)

5 m PZ
8 m PZ

Solution

Overstrip
Saturation

Operating Range

PZ·6H₂O (s)

0.22
0.26
Piperazine: Superior Energy Performance

<table>
<thead>
<tr>
<th>Amine</th>
<th>m</th>
<th>$k_{g,avg}' \times 10^7$</th>
<th>μ</th>
<th>ΔC_μ</th>
<th>T_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZ</td>
<td>8</td>
<td>8.5</td>
<td>11</td>
<td>0.84</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11.3</td>
<td>4</td>
<td>0.81</td>
<td>163</td>
</tr>
<tr>
<td>AMP/PZ</td>
<td>4_2</td>
<td>8.6</td>
<td>5</td>
<td>0.90</td>
<td>128</td>
</tr>
<tr>
<td>MEA</td>
<td>7</td>
<td>4.3</td>
<td>3</td>
<td>0.67</td>
<td>121</td>
</tr>
<tr>
<td>MDEA/PZ</td>
<td>5_5</td>
<td>8.5</td>
<td>13</td>
<td>0.91</td>
<td>117</td>
</tr>
</tbody>
</table>
Absorber Performance

40°C Intercooling

<table>
<thead>
<tr>
<th></th>
<th>5 m PZ</th>
<th>8 m PZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean Ldg at solid limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mol CO₂/mol alk)</td>
<td>0.22</td>
<td>0.26</td>
</tr>
<tr>
<td>Rich Loading</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>(mol CO₂/mol alk.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/G (mol/mol)</td>
<td>3.03</td>
<td>2.55</td>
</tr>
<tr>
<td>Equivalent Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kJ/mol CO₂)</td>
<td>36.0</td>
<td>36.3</td>
</tr>
<tr>
<td>Packing Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m²/mol CO₂)</td>
<td>126</td>
<td>298</td>
</tr>
</tbody>
</table>
PZ: superior solvent management

Resistant to oxidation

• Cyclic : PZ (160°C) = 1.3 MEA (120°C) = 4.7 mM/hr

Volatility just right

• At lean absorber: PZ = 8 MEA=30 ppm
• Thermal reclaiming removes nonvolatile impurities
• PZ & MEA may condense out as aerosols in absorber

Nitrosamine manageable

• PZ + NO₂/NO₂⁻ → mononitrosopiperazine (MNPZ)
• Decomposes at 150°C giving 1 mM MNPZ at SS
The Advanced Flash Stripper (AFS) minimizes Energy Use and Capital Cost.
Irreversibility of simple stripper using 5 m PZ

![Graph showing irreversibility of various processes with lean loading on the x-axis and irreversibility (kWh/tonne CO₂) on the y-axis. The processes include Cross exchanger, Condenser, Reboiler, Compression+Pump, and Trim cooler.]
Advanced flash stripper using 5 m PZ

Cold Rich BPS
8%

Warm Rich BPS
34% 113 °C

Rich Solvent
0.40 Ldg

Lean Solvent
0.22 Ldg

20K LMTD

∆P=2.5 bar

∆P=2.1 bar

∆P=2.6 bar

∆P=0.6 bar

150 °C

5.9 bar

∆T=7.5 K
Irreversibility of AFS using 5 m PZ

Irreversibility (kWh/tonne CO₂)

Lean loading (mol CO₂/mol alkalinity)

Simple stripper

Trim cooler

Stripper

Compression+Pump

Steam heater

Condenser

Cross exchanger
Total Annualized Cost of Regeneration
(Does not include absorber)

Annualized cost includes:
- **CAPEX**: steam heater, cross exchanger
- **OPEX**: steam cost, pumping cost

Annualized cost ($/tonne CO2)

- **8 m PZ Ldg=0.30**
- **5 m PZ Ldg=0.26**
- **8 m PZ Ldg=0.26**
- **5 m PZ Ldg=0.22**

Cross exchanger LMTD (K)

- 23
- 25
- 27
- 29
- 31
Total Energy

- Simple stripper (5m PZ, 7.5 K LMTD)
- AFS (5m PZ, 7.5K LMTD)
- AFS (8m PZ, 10K LMTD)
- AFS (5m PZ, 5K LMTD)

Lean loading (mol CO₂ / mol alkalinity)

Energy (W_EQ (kWh / tonne CO₂))

- 190
- 200
- 210
- 220
- 230
- 240
- 250
- 260

- 0.20
- 0.22
- 0.24
- 0.26
- 0.28
- 0.30
- 0.32
- 0.34
AFS saves 10% over SS
($/metric ton CO_2 Captured, not rigorous DOE method)
(593 MWe Gross)

<table>
<thead>
<tr>
<th></th>
<th>MEA-SS</th>
<th>PZ-SS</th>
<th>PZ-AFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Derating (MW_e)</td>
<td>145</td>
<td>97.5</td>
<td>90.1</td>
</tr>
<tr>
<td>CAPEX</td>
<td>22</td>
<td>22.1</td>
<td>19.4</td>
</tr>
<tr>
<td>OPEX</td>
<td>37</td>
<td>25.1</td>
<td>23.2</td>
</tr>
<tr>
<td>Cost of CO_2 Capture</td>
<td>59.5</td>
<td>47.2</td>
<td>42.6</td>
</tr>
<tr>
<td>(excluding TS&M)</td>
<td>(1.00)</td>
<td>(0.79)</td>
<td>(0.72)</td>
</tr>
</tbody>
</table>
Amine Aerosols can be measured by FTIR and Phase Doppler Interferometer (PDI).
Amine aerosols cause high amine emissions

Nucleation sites in flue gas
- $\text{SO}_3/\text{H}_2\text{SO}_4$
- Submicron fly ash
- SO_2/amine

+ Amine condensation
 - Amine/$\text{CO}_2/\text{H}_2\text{O}$ from solvent to aerosol

+ Poor collection of small drops in water wash

= Unacceptable amine emissions
Effect of H2SO4 Injection
FTIR Absorber out

H2SO4 Generator Turned on
Effect of 25 ppm SO$_2$ on PZ Aerosol

- SO$_2$ ON
- Intercooling

Graph showing the effects of 25 ppm SO$_2$ on PZ Aerosol with CO$_2$ levels and manual control points.
Phase-Doppler Interferometer (PDI)
Size & concentration: 0.5 – 10 µm up to 10⁶ particle/cm³
2G Bypass Extractive Sampler (tested 11/13)

Diagram:
- 1-½” Ball Valve
- PDI Analysis Cell
- Regenerative Blower
- 8” Sch. 10 Duct Absorber Outlet
PDI at Absorber Outlet – Startup

(11/22/2013)

Counts vs. Diameter (μm)

- 1.41x10^2 part./cm^3
- 1.02x10^2
- 5.02x10^1
Absorber Outlet – Steady-State
(LVI H$_2$SO$_4$: 11/22/2013)
Modifications for 3G PDI

• Use custom transmitter/receiver
 • to see down to 0.1 µm
• Use sapphire heated windows
 • to prevent liquid sheeting
• Set windows in flow body
 • To minimize wall geometry effects
Aerosol and AFS Test Plans for SRP 2014

• Energy performance of AFS
• Energy performance of 5 m PZ vs. 8 m PZ
• Aerosol formation
 – Add SO$_2$ and H$_2$SO$_4$ to the inlet gas
 – Use 3G PDI purchased by NCCC
 – Manual and FTIR measurements of amines
 – Impingement tray at top of the absorber
Conclusions

• 5 m PZ is a superior, demonstrated solvent.
• The advanced flash stripper provides 10% better energy performance for PZ and other solvents.
• Aerosol measurements by FTIR and PDI will quantify aerosol emissions for further control.
• **Acknowledgement:** “This material is based on work supported in part by the Department of Energy under Award Number DE-FE0005654.”

• **Disclaimer:** “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”