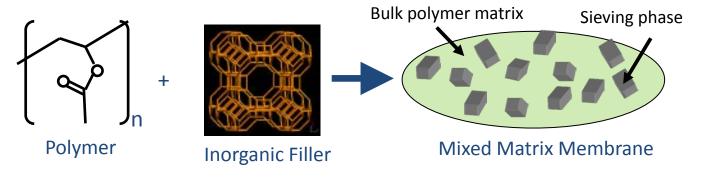
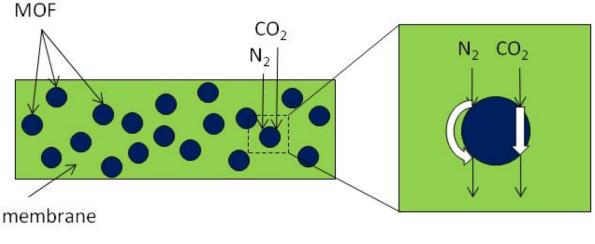
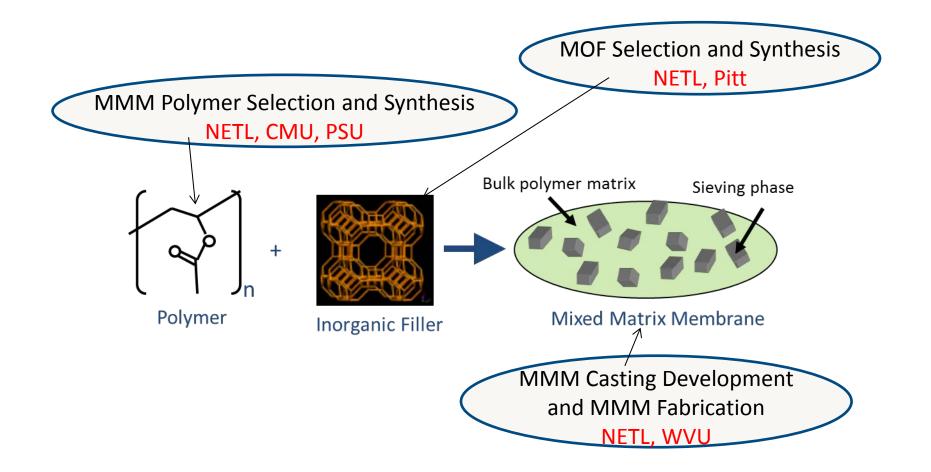

Mixed Matrix Membranes for Post-Combustion Capture Erik Albenze NETL


July 31, 2014 Carbon Capture Technology Meeting

Mixed Matrix Membranes

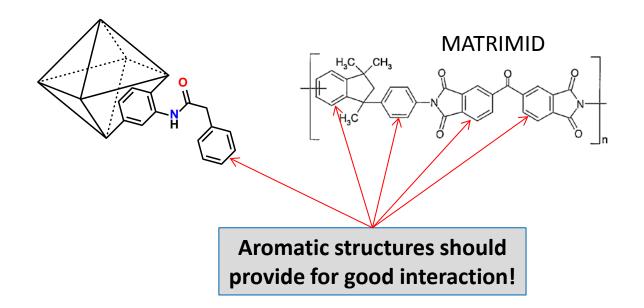

- Trade-off exists between permeability and selectivity for the pure polymers
- MMMs have the potential to exceed the Robeson upper bound
- Combine the processability of polymer with superior gas separation of filler (sieves)

MOF-based Mixed Matrix Membranes


CO₂ diffuses through MOF quickly; N₂ takes slower path around particle

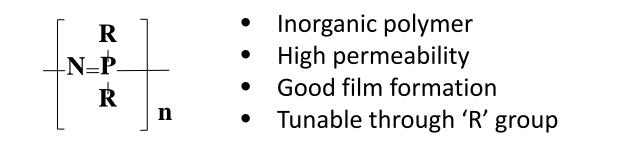
Polymer membrane material

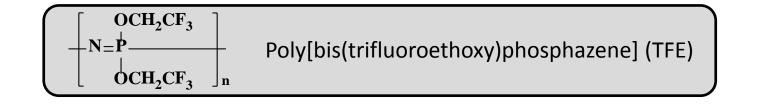
- MOF filler particles in a polymer matrix
 - MOF Particles have shown promise as a CO₂ sorbent and the pore size can be tuned based on the linker.
- The goal is to achieve separation properties like those of the filler rather than the polymer.
- Polymer membrane fabrication is potentially 10-fold less expensive than fabrication of membranes from crystalline materials like MOFs.


Approach

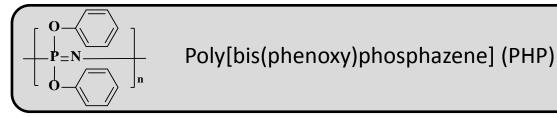
Previous work at NETL

 Development of a technique to overcome the defects at the polymer/filler interface

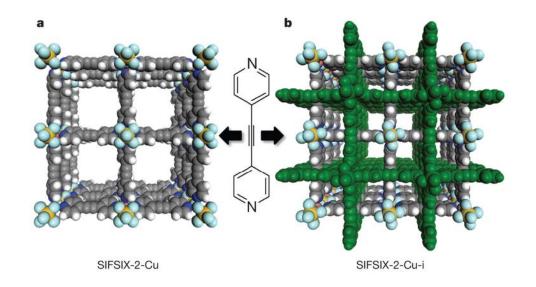

Current Work


Two polymer/MOF systems being investigated

- Polyphosphazene/SIFSIX
- Cerenol/UiO-66



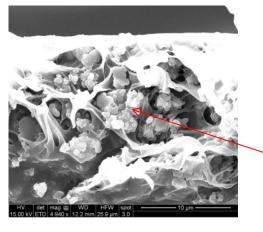
Polyphosphazenes



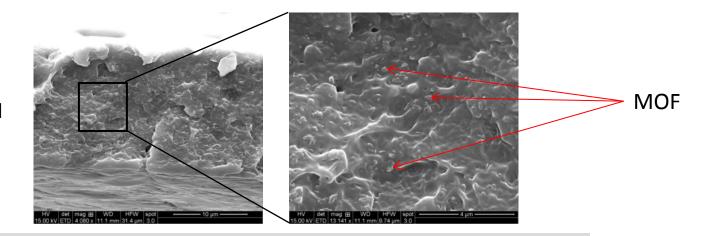
SIFSIX

- System does not adsorb water
- High CO₂ solubility selectivity over N₂
- Fluorinated groups should provide good interaction
- Pore size ~5Å

Polyphosphazene Films


Polymer	CO ₂ Permeability (Barrer)	N ₂ Permeability (Barrer)	CO ₂ /N ₂ Selectivity
Phosphazene-TFE	317 ± 9	27 ± 2	14 ± 1
Phosphazene-OFP	1270	670	1.9
Phosphazene-PHP	4.6 ± 0.2	1.3 ± 0.1	3.3 ± 0.2

Phosphazene-TFE selected for MMM fabrication



Polyphosphazene MMMs

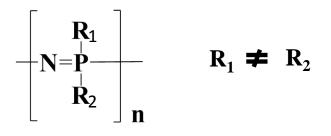
TFE/UiO-66-NH2 MMM cross-section

MOF w/ poor adhesion & agglomeration

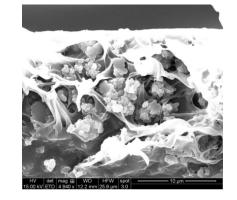
TFE/SIFSIX MMM cross-section

SEM images show 'good' adhesion between polymer and MOF for SIFSIX filler

Polyphosphazene MMM Separation Performance

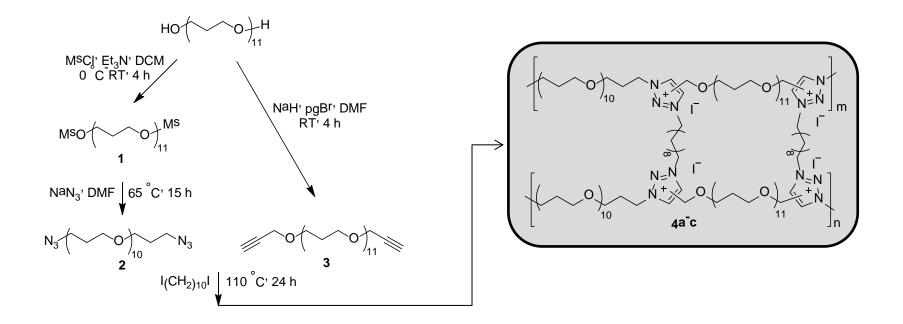

Phosphazene Membrane	MOF	Loading	CO ₂ Permeability (Barrer)	N ₂ Permeability (Barrer)	CO ₂ /N ₂ Selectivity
Neat TFE	NA	NA	317 ± 9	27 ± 2	14 ± 1
TFE MMM	UiO-66-NH2	10 wt%	354 ± 8	34 ± 4	11 ± 1
TFE MMM	UiO-66-NH2	23 wt%	314 ± 14	40 ± 5	8 ± 1
TFE MMM	SIFSIX	10 wt%	360 ± 6	22 ± 1	17 ± 1

Improved performance observed for TFE/SIFSIX combination BEST OPTION FOR HOLLOW FIBERS

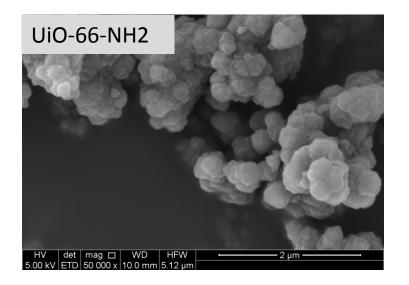

Moving Forward - Polyphosphazene

• Different side chains

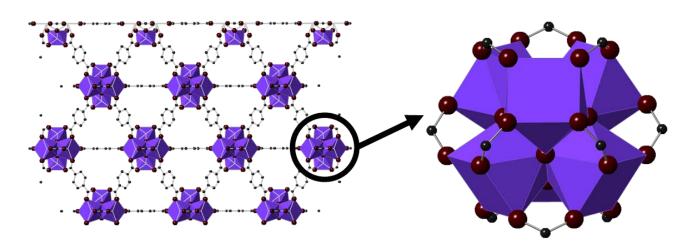
• Surface functionalization of Gen 1 MOF for improved adhesion


- Continue hollow fiber development and testing
 - Simulated flue gas stream including moisture and contaminants

Cerenol



- Ether groups for CO₂ interaction
- Ionic character for CO₂ interaction
- Crosslinking for structural properties

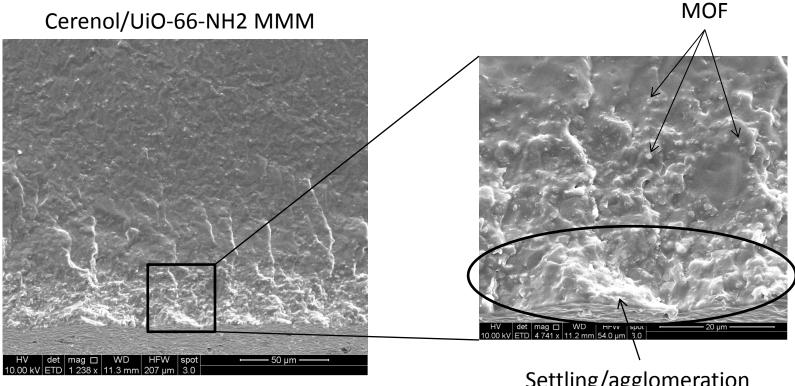

13

- Tunable many 'knobs to turn'
- Two different basic formulations

UiO-66-NH2

- Good CO₂ uptake
- Stable in the presence of water
- Can be surface functionalized through the linker

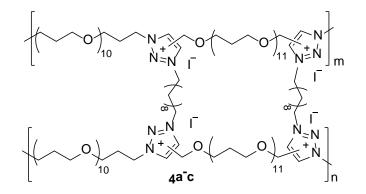
Cerenol Films


Polymer	Crosslinker loading	CO ₂ Permeability (Barrer)	N ₂ Permeability (Barrer)	CO ₂ /N ₂ Selectivity
Cerenol-650	12 wt%	113 ± 4	6.0 ± 0.3	19 ± 1
Cerenol-650	22 wt%	86 ± 2	2.1 ± 0.0	41 ± 1
Cerenol-650	36 wt%	97 ± 3	2.7 ± 0.1	37 ± 1

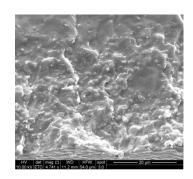
- Good permeability and good selectivity
- Minimum of 22 wt% crosslinker yields best results
- Take advantage of ether character for good MOF adhesion?

Excellent potential as a MMM material

Cerenol MMMs


Settling/agglomeration

SEM images show potential for 'good' adhesion but also show settling – efforts underway to address this issue



Moving Forward - Cerenol

- Optimize variables
 - Crosslinker length
 - Anion

- Resolve settling of MOF
 - Increase viscosity of polymer dope
- Continue hollow fiber development and testing
 - Simulated flue gas stream including moisture and contaminants

Improvement Compared to Previous Work at NETL

	Previous Work at NETL	Polyphos./ SIFSIX	Cerenol	Cerenol/ UiO-66
Permeability	<30 Barrer	360	97	Potential for 100+
Selectivity	30-40	17	37	Potential for 40+
Potential for improvement	minimal	yes	yes	yes

Summary

- 2 MMM systems under development
- Phosphazene-TFE/SIFSIX MMM successfully fabricated
 - Permeability of 360 Barrer
 - Selectivity of 17

• Cerenol films fabricated

- Permeabilities of 86-113 Barrer
- Selectivities of 19-41
- Best combination: Permeability = 97, Selectivity = 37
- MMM Hollow Fibers in development for contaminant and moisture testing

Acknowledgements/Disclaimer

• Polyphosphazene development

- Prof. Allcock, Zhicheng Tian, Andrew Hess
- Cerenol development
 - Hunaid Nulwala, Xu Zhou
- MOF development
 - Prof. Rosi, Alex Spore, Tao Li, Santosh Kumar
- Membrane fabrication and testing
 - Surendar Venna, Shan Wickramanayake
- Carbon Capture Group Lead
 - Dave Luebke

Disclaimer: This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Questions???

