Engineered Glass Seals for SOFCs

Edgar Lara-Curzio
Materials Science & Technology Division
Oak Ridge National Laboratory

Annual SECA Workshop July 24, 2013

Acknowledgments

- Valerie Garcia-Negron, Dana McClurg, Beth Armstrong, Rosa M. Trejo, Hannah Stokes and John Henry (ORNL).
- Matt Chou, Jeff Stevenson (PNNL).
- This research was sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL under Contract DEAC05-000R22725 with UT-Battelle, LLC.
- Rin Burke and Briggs White for guidance and support.

Outline

- Background
- Engineered Glass Seals
 - Characterization
 - Routes to low-cost manufacturing
- Summary

Background

Requirements for SOFC seals

- Simultaneous fulfillment of thermal, physical, chemical, mechanical and electrical property requirements.
- Phase stability and chemical compatibility without substantial property degradation for 40,000 hours in oxidizing and wet reducing environments.
- Address potential lack of flatness and/or parallelism of cells with large active area

Objective

- To develop engineered glass seals for SOFCs.
- Identify low-cost manufacturing processes

Engineered Glass Seals

Composition SCN Glass

As sintered

Element	at %
0	57.13
Si	25.64
K	2.85
Ba*	2.00
Na	3.84
Ca	2.32
Al	2.64
Mg	1.21
Ti	0.06
В	0.04
Zn	0.01

Microstructural Evolution of multicomponent silicate glasses

Ongoing exposure tests have surpassed 25,000 hrs

Viscosity of SCN Glass

- Viscosity decreases
 with temperature and
 increases with time of
 exposure.
- Increase in viscosity could be explained by precipitation of crystalline phases.

Engineered Glass Seals

Wetting Behavior of Engineered Glass Seals

1:1

1:2

1:3

ZHB

Agsco

SCN glass

Viscosity of SCN glass containing zirconia hollow spheres

Frangible calcia-stabilized zirconia particles in SCN glass matrix

The viscosity of the seal can be tailored to accommodate the large temperature gradients in SOFCs during transients and steady state operation.

Engineered Glass Seals

Zirconia Tube with Machined Sinusoidal Pattern

Zirconia tubes have been bonded to zirconia plates using engineered glass seal. This is the specimen configuration for testing in dual environments

National Laboratory

NDE of engineered glass seals

National Laboratory

Lara-Curzio et al. July 2013 (SECA Workshop)

Routes to low-cost manufacturing

- Tape casting
- Screen printing
- Fused deposition (3D Printing)

Routes to low-cost manufacturing

Tape casting

Tape Casting

Post-mortem analysis of SCN-1 glass with 15V% ZrO₂ fibers after 12 thermal cycles

- No iso-propanol penetration along sealing edges or through bilayer
- No micro-cracks on sealing glass

Thermal cycling of SCN-1 glass with ZrO₂ fibers

- ~40°C to 800°C in 3h, held for 3h at 800°C then furnace cooled to ~40°C in ambient air, 1 cycle/day.
- Constant leak rates suggested hermetic seal (observed leakage was from perimeter mica seal)
- Post-mortem check with iso-propanol showed no penetration

Routes to low-cost manufacturing

- Tape casting
- Screen printing

National Laboratory

National Laboratory

Lara-Curzio et al. July 2013 (SECA Workshop)

Viscosity of engineered glass seals

The viscosity of the seal can be tailored to accommodate large temperature gradients in SOFCs during operation.

high viscosity

Low viscosity

Screen-printed engineered glass seals

een-printed engineered glass seals

After Sintering

<u>Sintering Process:</u>

Up to 600 °C in 6 hrs, then up to 850 °C to 2 hrs.

een-printed engineered glass seals

Left Edge

SCN-ZHB-3:1-5:1 (sandwich)

een-printed engineered glass seals

Middle Side

SCN-ZHB-3:1-5:1 (sandwich)

1.5KX

100X

utes to low-cost manufacturing

Tape casting

Screen printing

ttp://www.additive3d.com

- We are using a 3-D printer to manufacture engineered glass seals with predetermined concentration values of glass and ceramic particles/ceramic fibers.
- The concentration of second phases and distribution of sizes would depend on topographic features of the cell and maximum local temperature.

Viscosity of SCN glass containing zirconia particles

iscosity of the seal e tailored to mmodate the large erature gradients FCs during ients and steady operation.

gh viscosity

- We are using a 3-D printer to manufacture engineered glass seals with predetermined concentration values of glass and ceramic particles/ceramic fibers.
- The concentration of second phases and distribution of sizes would depend on topographic features of the cell and maximum local temperature.

mmary

Engineered glass seals are being developed for SOFCs.

Designs consist of a multi-component silicate glass matrix and a ceramic second phase (hollow spheres, fibers, particles).

The effectiveness and durability of these seals are being investigated.

Low-cost manufacturing processes are being developed.

