Progress on Performance, Durability, and Reliability of LGFCS SOFC Technology
Zhien Liu and Ted Ohrn
July 23, 2013
Outline

● LGFCS Program Overview
 ● Manufacturing Automation
 ● Integrated String Test
● Performance and Durability Testing
 ● Block Scale Results
 ● Subscale Results
● Cell technology status and optimization for commercial product
 ● Primary Interconnect (PIC)
 ● Anode Development
 ● Cathode Development
 ● Candidate materials for future cell technology
● Structural Reliability
LG Production Research Institute developing automated strip assembly equipment

- Eliminate manual operations of:
 - Edge glassing
 - SIC wire application
 - Subassembly (manifolds to printed substrates)
LGFCS Integrated String Test Program

- Test of a 220 kW system demonstrator incorporating all key subsystems
 - Fuel Processing
 - Pressurized Generator Module including turbogenerator
 - Power Electronics
 - Pipeline natural gas and grid connection
 - 3Q-4Q 2014 commissioning/4Q testing

- SECA program supports further improvements in cell/stack lifetime up through Block-scale (19 kW) testing
Outdoor Test Pad under construction for receipt of major IST components.
Outline

● LGFCS Program Overview
 ● Manufacturing Automation
 ● Integrated String Test

● Performance and Durability Testing
 ● Block Scale Results
 ● Subscale Results

● Cell technology status and optimization for commercial product
 ● Primary Interconnect (PIC)
 ● Anode Development
 ● Cathode Development
 ● Candidate materials for future cell technology

● Structural Reliability
Block Test replicates Plant Configuration

- Block metric testing matches full system cycle, components (less TG and recuperator), operation and boundary conditions

LGFCs NG “Dry Cycle” Configuration

- Thermally self-sustaining insulation system
- Anode and cathode ejectors
- Reformers and heat exchangers
- Off-gas burners
- System control methodology
Phase 1 Test – Performance and Durability

- Initial ASR = 0.34 ohm-cm²
- Fuel Utilization System equivalent ~78.8%
- Anode Loop Efficiency (system equivalent) ~61.1%
- Current density = 380 mA/cm² (NOC)
- Test ended prematurely due to secondary interconnect failure.

860°C Nominal Temperature, 6.4 Bara Pressure
Power Degradation = 0.5%/1000 hrs
Phase II Test met SECA Target

Power Degradation = 1.1%/1000 hours
(Rate higher than Phase I due to wider temperature range)

1. Air heater TC fault. Repaired and test restarted after 30 h (A)
2. Main fuel mass flow controller unstable at high flow rate. Ran flow controller at lower stable conditions. Repaired and test restarted after 145 h (B)
3. Current limiter set to 20.0 A on HMI. Limited current to 93.5% of design point. Correct during end-of-year facility maintenance shutdown at 335 h (C)
4. Blockage in gas analysis line at stack inlet after approx. 500 h. Unable to determine CH₄ conversion in reformer and stack inlet composition. Assumed equilibrium CH₄ conversion thereafter for ASR calculations
5. IV/OPV deviation alarm on HMI set too close to rig operating point. Resulted in trip and controlled shutdown at 1245 h (D).
Block Performance as Expected

(Current, fuel flow, and temperature drop forced to match data)

Data at 343 hours
Phase II Block Testing Summary

- Initial performance within expectations
 - 18.8 kW output at design point current
 - ASR ~ 0.345 ohm-cm² for strips in design temperature range
- Power degradation 1.1%/1000 hours
 - Achieves SECA target of 1.5%/1000 hrs at 3000 hours
- Degradation higher than subscale and Phase I Test
 - Wider temperature range than for Phase I test. Parts of the block are outside of design temperature range.
 - Degradation observed due to printing defect which has since been addressed and correction validated
 - Degradation of strips near design average temperature was similar to Phase I test
Outline

● LGFCS Program Overview
 ● Manufacturing Automation
 ● Integrated String Test

● Performance and Durability Testing
 ● Block Scale Results
 ● Subscale Results

● Cell technology status and optimization for commercial product
 ● Primary Interconnect (PIC)
 ● Anode Development
 ● Cathode Development
 ● Candidate materials for future cell technology

● Structural Reliability
Bundle Testing Shows Consistent Performance

- Agrees well with model from pentacell data
Testing on desulfurized natural gas to confirm performance on real world fuel

- Fueled from small scale SCSO* system using pipeline natural gas
- Initial performance and degradation are good

*SCSO = Selective Catalytic Sulfur Oxidation
Subscale Durability Map Demonstrates Trends and Guides Cell Development

- Performance mapped over operating envelope
- Detailed performance separation achieved
- Durability performance confirmed at larger scales

ASR @ 16K hrs = 0.465 ohm-cm²

Projected Points

Shaded area represents performance envelope which meets product requirements
Consistent performance across scales validates durability testing approach

- 860°C Nominal Temperature
- 6.4 Bara except for PBT5
- Wider temperature range brings out print defect - since corrected and validated

Differences between block and subscale:
1. Cathode air and temperature distribution
2. Bundle-to-bundle fuel distribution
3. BOP chrome, insulation contaminants
4. Manufacturing variability

T1314 Data is excluding 1/4-strips outside of Design Temperature Range
Outline

● LGFCS Program Overview
 ● Manufacturing Automation
 ● Integrated String Test

● Performance and Durability Testing
 ● Block Scale Results
 ● Subscale Results

● Cell technology status and optimization for commercial product
 ● Primary Interconnect (PIC)
 ● Anode Development
 ● Cathode Development
 ● Candidate materials for future cell technology

● Structural Reliability
Two-Year Life was Demonstrated for Primary Interconnect (PIC) Design and Materials

- Cathode: 8.5 - 11.3% O₂, 1.2%, H₂O, bal N₂
- Anode: reformate fuel
- Elapsed Time, hours: 0 - 16000
- PIC ASR change from start to the end is negligible

Graph shows the comparison of PIC ASR for PCT63B: 860°C and PCT89B: 800°C. The graph also indicates the presence of anode, cathode, anode current collector, and cathode current collector.
Modified PIC Shows Improved Performance

- Further mitigate degradation mechanism for 3-5 year life
- Higher conductivity PIC materials and design modification
- PIC ASR is as low as 0.03 ohm-cm² and stable up to 4300 hrs
Outline

● LGFCS Program Overview
 ● Manufacturing Automation
 ● Integrated String Test
● Performance and Durability Testing
 ● Block Scale Results
 ● Subscale Results
● Cell technology status and optimization for commercial product
 ● Primary Interconnect (PIC)
 ● Anode Development
 ● Cathode Development
 ● Candidate materials for future cell technology
● Structural Reliability
Baseline Anode Microstructural Change (ODOD*)

- Baseline anode (Ni-YSZ) tested at 925°C for 4000 hrs
- Significant microstructure change
 - Porosity increases and metal phase depletion at anode/ACC interface

* This work is supported by Ohio Department of Development
Single Layer Anode for Improved Durability

- 1980hrs in ambient + 3006 hrs in simulated system conditions

![Graph showing cell ASR over elapsed time](image)

- **PCT150B1: SL Anode (thick), 4 bara**
- **SCT6-101B: SL Anode, 1bar**
- **SCT6-101B, SL Anode, 4bar**

Test rig related issue

Bundle outlet fuel, 12%O2-1.2%H2O, 925°C,
Detailed Microstructural Analysis of Single Layer Anode by 3D Reconstruction (ODOD*)

- Metal phase generally is uniform across the anode

![Graph showing volume fraction of pores, ceramic, and metal across distance from interfaces.](image)

- SCT6-101B
- 925°C, 5000 hrs, bundle outlet

- ≈ 1 µm from Electrolyte/Anode interface
- ≈ 1 µm from Anode/substrate interface

* This work is supported by Ohio Department of Development
Lower Anode ASR Demonstrated for Future Cell Technology

- High thermal expansion substrate allows use of higher conductivity anode current collecting material
- Thinner substrate reduces fuel diffusion resistance

![Graph showing ASR reduction and temperature over time](image)
Outline

● LGFCS Program Overview
 ● Manufacturing Automation
 ● Integrated String Test

● Performance and Durability Testing
 ● Block Scale Results
 ● Subscale Results

● Cell technology status and optimization for commercial product
 ● Primary Interconnect (PIC)
 ● Anode Development
 ● Cathode Development
 ● Candidate materials for future cell technology

● Structural Reliability
Cathode Microstructural Change after 16,000 hrs

- Accumulated free MnOx at electrolyte interface at 800°C
- At 860°C also see densification

PCT89B: 800C/16,000 hrs

PCT63B: 860C/16,000 hrs
Approaches for LSM-Based Cathode Optimization

- Evaluation of different cathode compositions – LSM and ionic phase
 - Thermodynamic consideration
 - Second phase/impurities
- Doped LM/LSM for microstructural stability at high temperatures
Cathode Optimization to Eliminate Free MnOx

- Free MnOx was identified only in baseline cathode pellet

Baseline

Candidate A

Candidate B

Candidate C

As-fired cathode pellets

Baseline

Candidate A

Candidate B

Candidate C

Cathode pellets aged for 1000 hours at high temperature
Accelerated Testing Method Developed for Cathode Screening

- Allows screening of cathodes in 500 hrs
- Accelerated testing indicates next generation cathode is more stable
- Results repeated for both baseline and next generation cathodes

500 hrs at accelerated testing conditions
Next Generation Cathodes Show Improved Durability (800°C)

- For baseline degradation in 2nd year attributed to cathode (process at ~100 Hz)
- The change in the AC impedance peak not clearly linked to electrode microstructure change
Next Generation Cathodes Show Improved Durability (900°C)

- Tests at higher temperature show potentially better performance for next generation cathodes compared to baseline

900°C: Cell ASR vs Time

- Bundle outlet fuel, 12%O2-1.2%H2O, 4.0 bara
Outline

- LGFCS Program Overview
 - Manufacturing Automation
 - Integrated String Test
- Performance and Durability Testing
 - Block Scale Results
 - Subscale Results
- **Cell technology status and optimization for commercial product**
 - Primary Interconnect (PIC)
 - Anode Development
 - Cathode Development
 - Candidate materials for future cell technology
- Structural Reliability
Bundle ASR Improvement by using High Conductivity Via Material

- Average bundle ASR is 0.25 ohm-cm² vs. 0.28 ohm-cm² for baseline bundle without increasing the cost.
Expected Performance for Next Generation Anode, Cathode, and PIC Technology

- Average repeat unit (RU) ASR of 0.25 ohm-cm² at 1 bara
- Projected to 0.22 ohm-cm² at 4 bara and ≤0.20 ohm-cm² using higher conductive ACC & thinner substrate
Need for Alternate Cathode Driven by Desire for Lower Operating Temperatures

- Focusing on nickelate cathodes due to its CTE, lower ASR and activation energy
Modified Nickelate Cathode Shows Significant Interface Improvement

- Fine microstructure/more triple phase boundaries
- Stronger interface may improve both durability and reliability
- The key challenge of phase stability needs further effort

Button cells tested for 150 hrs at 790°C
Nickelate Cathode Shows Promising Short Term Durability

- Nickelates also show low-temperature steam effect
- Lower degradation after stabilization for optimized nickelate cathode
Improved ASR for Future Cell Technologies Gives Operating Flexibility

- Block operating temperature: 810-910°C for baseline
- Allow fuel cell system operation at lower temperature and/or improved efficiency

Anode: bundle inlet, cathode: dry air, 1 bara
Outline

- LGFCS Program Overview
 - Manufacturing Automation
 - Integrated String Test
- Performance and Durability Testing
 - Block Scale Results
 - Subscale Results
- Cell technology status and optimization for commercial product
 - Primary Interconnect (PIC)
 - Anode Development
 - Cathode Development
 - Candidate materials for future cell technology
- Structural Reliability
Structural Reliability Considerations

- LGFCS utilizes all ceramic strip
- Weibull probabilistic analysis required for all components
- Evaluating reliability against fast-fracture/infant mortality and time-dependent mechanisms:
 - Initial emphasis on understanding slow-crack growth of porous substrate
 - Now adding focus on properties of dense ceramics and glass-ceramic based joints

Bundle assembly (~350W): Serial fuel and current flow

~17"H x 12"W x 16"D

Block assembly (~20kW): 5 strips of 12 fuel-parallel bundles
LGFCS Substrate Exhibiting High K_{th} for Slow Crack Growth

Typical Slow Crack Growth Curve for Ceramics Showing Three Regions
($I =$ threshold, $II =$ linear, $III =$ instability)

Time to failure can be predicted:

$$t = \frac{2(K_{IC}^{2-n} - K_{th}^{2-n})}{(2-n)A\sigma^2Y^2}$$

Porous MMA substrate
900°C
50% H$_2$O, 48.3% N$_2$, 1.7% H$_2$

K_{th} is $\sim 70\%$ of K_{IC}

$K_{th} = 1.6$ MPa\sqrt{m}
Summary

- Stack power degradation rate met SECA Phase 2 target
- Accelerated testing technique developed under this program proving to be a good tool for cathode material screening for long term stability
- Next generation/optimized electrodes being identified under long-term durability testing to advance to 5-year service life
- Improved ASR for future cell technologies gives operating flexibility and allow fuel cell system operation at lower temperature and/or improved efficiency
- Porous MMA substrate material showing promising properties to benefit long-term structural reliability
Acknowledgements

● Special thanks to LGFCS project manager Patcharin Burke and the entire SECA program management team

● LGFCS SECA partners: Case Western Reserve University and Oak Ridge National Laboratory for permission to use certain of their images in the presentation.
Acknowledgements_Continued

- This material is based upon work supported by the U.S. Department of Energy, National Energy Technology Laboratory under Award Number DE-FE0000303.

- **Disclaimer:** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.