

Assessment of the Distributed
Generation Market Potential for Solid
Oxide Fuel Cells

Federal Project Manager: Katrina Krulla

Analysis Team: Dale Keairns, Arun Iyengar, Dick

Newby

July 23, 2013

Near-Term SOFC Program Timeline

- Progressively larger SOFC stacks and systems
- Provide the technology base to permit grid-independent distributed generation applications
- 1 MW natural gas fueled DG systems will establish the manufacturing and operational experience necessary to validate and advance the technology for natural gas and gasified coal-based central power generation

Study Objectives

- Given SOFC technology strengths, identify relevant U.S. market segments for early distributed generation applications.
- Develop DG SOFC reference plant design (cost & performance) to meet the market need.
- Utilize related technology experience to understand market penetration necessary for a DG SOFC system to be cost competitive.
- DG path to utility scale applications.

SOFC DG Process Concept High Efficiency Minimizes CO₂ Emissions

SOFC Strengths for DG Applications

- Base load power
- High efficiency / minimum
 CO₂ emissions
- Negligible SOx, NOx emissions
- Low noise
- Availability of waste heat

Source: NETL

What Market Characteristics Are Important? Focus on new technology market entry - SOFC

- Market unit size compatible with technology capability -SOFC market entry up to 1 MWe
- Regulatory environment self generation incentives, CO₂ related legislation
- Small group of buyers/large number units vs. large number of buyers/large number of units in market segment
- Reliability vs. Economics
- Capital cost vs. Cost of Electricity

Market Assessment (U.S.)

DG Market Segment Considered	Characteristics
 Electrical substations Natural gas compressor station power Data centers Back-up power (e.g. offices, large scale commercial) Enhanced Oil Recovery 	 Opportunities for base load power Focused customer base (small group of buyers, large number of units) Risk of grid failure important driver
 Combined Heat & Power (CHP) Large commercial (e.g. hotels, hospitals) Institutional (e.g. colleges, military bases, museums) Small retail and related applications Municipal 	 Dispersed U.S. customer base Established incumbent technologies Low cost required for market entry Changing load Use of waste heat

Distributed Generation Market Potential

	Market Segment	2011 - 2018 Market Growth	DG Unit Size (80% of market)
	Natural gas compressor stations	1.4 GW	5 kW – 1 MW
	Electrical substations: grid strengthening	500 MW	1 – 2 MW
	Data centers: prime power	6 MW	5 kW – 1 MW
	Electrical substations: backup power	?	> 5 kW
	Large scale commercial: online backup power	2 GW	300 kW – 1.5 MW
	Offices: online backup power	2 GW	100 – 500 kW
	Large commercial CHP	900 MW	200 – 800 kW
	Institutional CHP	500 MW	> 500 kW - 1.5 MW
	Small commercial CHP	800 MW	4 – 60 kW
	Municipal CHP	400 MW	> 400 kW - 1.5 MW

Near Term
Market
Opportunity
>2 GW

Long term market (2040) >25GW

Market Assessment Informs Selection of SOFC DG Reference Plant Design: 1 MWe

Technology Performance & Cost Perspective *Distributed Generation – Current Status*

SOFC Technology Development Plan

	Today's SOFC DG	2020 SOFC DG (1 st 'Unit')	Nth of a Kind SOFC DG (Adv. Performance)	Early Utility NGFC Plant with CCS
Capacity	>30kW	250kW – 1 MW	Up to 5 MW	≥ 100 MW
Carbon Capture	No	No	No	Yes (>95%)
NG Reforming	Internal	Internal	Internal	Internal
Cell Overpotential, mV @ 400 mA/cm ²	140	70	70	70
Fuel Utilization, %	80	90	90	90
Stack Degradation*, %/1000 hr	1.5	0.2	0.2	0.2
System Efficiency, % (HHV)	52.0	61.3	61.3	64.2
SOFC Commercial Stack Cost Target, \$/kW (2011\$)	NA	NA	225	225

^{*} Cost of degradation accounted for by including additional SOFC stack area

SOFC DG System Cost – Nth of a Kind (2011\$)

Module costs (\$/kWe)	2011\$
SOFC Stack	225
Enclosure	30
Transport & Placement	14
Site Foundations	44
Inverter	68
Pre-Reformer	29
Total Module	411
Total Module with 10% extra installed area for 0.2%/1000 hr	
stack degradation	452
BOP costs (\$/kWe)	2011\$
NG Desulfurizer	110
Cathode Air Blower	18
Cathode Recycle Gas Blower	45
Cathode Heat Exchanger	56
Anode Recycle Gas Blower	17
Air Combustor	51
NG Pre-Heater	2
Accessory Electric Plant	199
Instrumentation &Control	33
Total BOP	531
Total System (\$/kWe)	983

Background – Learning Curves

- Developed by Wright in 1936 after observing labor time reductions to assemble airplanes.
- In 1998 Mackay & Probert showed that a similar rule could be applied to capital cost reductions in renewable energy.

- a = Cost of first unit
- x = Number of units produced
- b = Learning rate exponent
- 1 2^{-b} = Learning Rate, reduction in capital cost for doubling of capacity
- Models including NEMS rely on this curve to predict future capital costs.

Capital Cost Reductions

Capital cost reductions for SOFC vary between 30% - 8%

Source: NETL

Note: LR (%) - cost /(original cost before doubling capacity)shown

System Specific Cost Learning Curve – Installed Capacity

Impact on NG Price on DG SOFC Cost of Competitiveness

SOFC DG Enables Technology Base for Transformational Utility Scale Electric Power with Capture

SOFC: Meets DG Market Need Path to Utility Scale Power Generation w/o CO₂ Emissions

- Distributed generation market opportunity: electric power (250 kW to MWe class units)
- SOFC DG electric power application
 - Provides > 20 percentage point gain in efficiency
 - Results in significant CO₂ emission reduction
- Commercial, cost-competitive SOFC DG product by 2025
 - Consistent with technology development plan
 - ~ 25 MWe installed capacity to achieve competitive cost
- Projected learning to achieve competitive cost is consistent with similar technology commercialization experience
- Higher natural gas price: reduces time to commercialization
- SOFC DG applications provide path to utility scale plants with >98% carbon capture with efficiencies > 60%

Questions

For More Information Contact:

Katrina Krulla

Katrina.krulla@netl.doe.gov

412-386-5366

SOFC DG Reference Plant Design (1 MWe) Operating & Design Parameters

Parameter	Today's SOFC DG	2020 SOFC DG (1 st 'Unit')	Nth of a Kind SOFC DG (Adv. Performance)
Net AC Power, kW	1000		
Operating Pressure, atm	1.0		
Operating Temperature, C (F)	750 (1382)		
Natural Gas Feed, lb/hr	321.5	272	.7
Cell Voltage, V	0.792	0.83	30
Current Density, mA/cm ²	400	400	0
Inverter Efficiency, %	97	97	•
Auxiliary Loads, kW	24	24	
Net AC Efficiency (LHV)	57.6	67.	9
NET AC Efficiency (HHV)	52.0	61.	3

Capital Cost Reductions- Timeline

CHP Viewed as Possible Future Market Opportunity

Annual CHP Installed Capacity: 0 – 2MW

