Novel Functional Graded Thermal Barrier Coatings in Coal-fired Power Plant Turbines

Jing Zhang

Department of Mechanical Engineering Indiana University-Purdue University Indianapolis

UCR, HBCU/OMI Contractors Review Meeting
Pittsburgh, PA
June 11-13, 2013

Award No.: FE0008868

Program Manager: Dr. Richard Dunst

INDIANA UNIVERSITY
PURDUE UNIVERSITY
INDIANAPOLIS

Acknowledgement

- Subcontractor (Praxair Surface Technologies):
 James Knapp
- Industrial collaborators (Praxair Surface Technologies): John K. Anderson, Vlad Belov, Don Lemen, Li Li
- Graduate students (IUPUI): Xingye Guo, Yi Zhang

Outline of Talk

- I. Introduction
 - i. Pyrochlore oxide
 - Double-layer thermal barrier coating
- II. Results (September 1, 2012- June 1,2013)
 - Powder fabrication and characterizations
 - ii. Design of double-layer structure
- III. Summary / Future work

Goals

- The objective of the project is to investigate a novel double-layer functional graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) applications.
- The ultimate goal is to develop a manufacturing process to produce the pyrochlore oxide based coating with improved high-temperature corrosion resistance.

Pyrochlore

Pyrochlore-type rare earth zirconium oxides (Re₂Zr₂O₇,Re = rare earth)are promising candidates for thermal barrier coatings, high-permittivity dielectrics, potential solid electrolytes in high-temperature fuel cells, and immobilization hosts of actinides in nuclear waste.

Pyrochlore crystal structure: A₂B₂O₇. A and B are metals incorporated into the structure in various combinations. (credit: NETL)

Why La₂Zr₂O₇?

Compared with YSZ, La₂Zr₂O₇ has

- Higher temperature phase stability. No phase transformation
- Lower sintering rate at elevated temperature
- Lower thermal conductivity
- Lower CTE (can be enhanced by CeO₂ doping)

Phase diagram of La₂O₃–ZrO₂

YSZ vs. La₂Zr₂O₇

Materials property	8YSZ	La ₂ Zr ₂ O ₇
Melting Point (°C)	2680	2300
Maximum Operating Temperature (°C)	1200	>1300
Thermal Conductivity (W/m-K) (@ 800°C)	2.12	1.6
Coefficient of Thermal Expansion (x10 ⁻⁶ /K) (@1000 °C)	11.0	8.9-9.1
Density (g/cm ³)	6.07	6.00
Specific heat (J/g-K) (@1000 °C)	0.64	0.54

La₂Zr₂O₇ Fabrication Methods

- Solid-state reaction ¹
- Coprecipitation—calcination method²
- Sol-gel method ³

However, currently only small quantity powders were made at lab scale. There is an urgent need to develop a scalable method to produce large quantity of La₂Zr₂O₇

- 1. Cao, Vassen et al, Spray-drying of ceramics for plasma-spray coating, J. Eur. Ceram. Soc.,20,2433-2439 (2000)
- 2. Zhou et al, Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings, J. Alloy Compd, 438, 217-221 (2007)
- 3. Kido, Komarneni, Roy, Preparation of La2Zr2O7 by Sol gel route, J. Am. Ceram. Soc.,74, 422–424 (1991)

Layered Coating System

- The coefficient of thermal expansion of La₂Zr₂O₇ (10x10⁻⁶/K) is lower than those of both substrate and bondcoat (about 15x10⁻⁶/K). As a result, the thermal cycling properties may be a concern
- The layered topcoat is believed to be a feasible solution
- In this work, we develop a double-layer, functionally graded, pyrochlore oxide based TBC system

Scalable Thermal Spray Powder Production

- The powders are produced using a reengineered spray drying and sintering technique at Praxair Surface Technologies.
- La₂O₃ and ZrO₂ particles are mixed into a water based slurry, and then spray dried or atomized into a powder form, using a rotary wheel style spray drier to convert the liquid slurry into dry particles of an agglomerated La₂O₃/ZrO₂ powder.
- These spray dried particles are sintered in a gas fired kiln to achieve powder particles of an appropriate particle structure.
- The sintered cake is de-agglomerated to break down the cake, and screened to a particle size distribution suitable for spray.
- The resulting powder is then blended in a "V" blender to make a homogenous mixture of the variety of particle sizes.
- Approximately 150 lb of La₂Zr₂O₇ powders are produced in a single batch.

La₂Zr₂O₇ Powder Morphology

- Spherical shape with porous surface
- Good flowability and high density
- Particle size between 30 100 μm

Powder Size Distribution (PSD)

Particle size, µm

Microtrac standard range particle analyzer's percent passing data show that the average powder size, D_{50} , is ~65 μ m

X-ray Diffraction (XRD) Analysis

XRD data show that the powder composition is La₂Zr₂O₇

Chemical Composition - ICP-MS

All elements measured in weight percent unless otherwise specified. Sampling Method per ASTM B215.

Chemistry	Test Method	Test Lab	Min	Max	Result	ок
Aluminum Oxide	ICP	NSL Analytical Services		0.2	<0.1	Yes
Ferric Oxide	ICP-MS	NSL Analytical Services		0.5	0.1	Yes
Hafnium Oxide	ICP	NSL Analytical Services		2.5	8.0	Yes
Lanthanum Oxide	By Difference	NSL Analytical Services			57	Yes
Other Oxides Total	ICP-MS	NSL Analytical Services		1.5	0.4	Yes
Silicon Dioxide	ICP	NSL Analytical Services		1.0	0.7	Yes
Titanium Dioxide	ICP-MS	NSL Analytical Services		0.5	0.0	Yes
Uranium + Thorium	ICP-MS	NSL Analytical Services		0.05	0.02	Yes
Zirconium Oxide	ICP	NSL Analytical Services			41	Yes

- Inductively coupled plasma mass spectrometry (ICP-MS) technique was used to measure the powder compositions
- The measurements confirms La₂Zr₂O₇ composition

Vertically Cracked Intermediate Layer

- Intermediate layer (e.g., ZircoatTM) between topcoat and bondcoat, characterized by the intentional vertical cracks, provides improved tolerance to the strain caused by the CTE mismatch
- The Intermediate layer will be applied as a (1) lowdensity or (2) dense vertically cracked structure.

Cross-section of APS Zircoat[™] containing approximately 16-24 cracks per linear centimeter. (Feuerstein, Hitchman, Taylor, Lemen, Process and Equipment for Advanced Thermal Barrier Coatings, in *Advanced Ceramic Coatings and Interfaces III* (2009)

Design of Layered TBCs

00 µm	Dense La ₂ Zr ₂ O ₇
←200 μm →	Porous La ₂ Zr ₂ O ₇
mm \	Low density layer,
< 125	7YSZ
	Ni based superalloy substrate

Dense La₂Zr₂O₇ Porous La₂Zr₂O₇ High density vertically cracked layer, 7YSZ Ni based superalloy substrate

Dense La₂Zr₂O₇ Porous La₂Zr₂O₇ Ni based superalloy substrate

(3)

(1) (2)

Air Plasma Spray (APS)

- Non-transferred electric arc excites a gas mixture generating a rapid expanding ionized stream
- High temperature at lower velocity coating process. The most versatile process capable of spraying any material that does not sublime.
- Mostly used for spraying ceramic materials
- ID coating capable down to approximately 3"
- PST shrouded plasma produces metallic coatings with very low oxide

Process Control Parameters

Typical Coating Microstructure

- Torch build Powder dwell time and velocity
- Torch gas
 Particle velocity
- Powder carrier
 Particle melting
- Shield gas
 Coating density and oxide
- Auxiliary carrier gas
 Particle velocity
- Torch current Particle melting
- Standoff
 Coating density and oxide
- Powder feed rate
 Unmelted particles
- Powder particle size distribution
 Deposition efficiency

Plasma Spray Torches

- PST 1108, 1130, 1125
- PST SG100
- TAFA PlasJet
- Metco F4
- Metco 3, 7, 9
- MetTech
- Metco Triplex
- Progressive 100HE

Furnace Cycle Oxidation Testing

- Isothermal test of TBC, with periodic excursions to room temperature (e.g. 1135-100°C)(2075-212°F)
- 50 Min at Temp Air Quench 10 min
- CM bottom-loading furnaces

Thermal Shock Testing

JETS (Jet Engine Thermal Simulation) Thermal gradient test of TBC Ceramic layer durability assessment Measured by percentage of cracking on specimen edge

Summary

- PST has successfully developed a unique manufacturing process to scale up the production of high-purity, large-quantity lanthanum zirconate powders (>150 lb) in one single batch
- The powders morphology and chemistry are characterized
- Double-layer coating systems are designed

Future Work

- Fabricate the double-layer TBC systems
- Characterize and evaluate the TBC materials and their corrosion resistances at elevated temperatures and in corrosive environments