

Computational Microstructural Optimization Design Tool for High Temperature Structural Materials

Rajiv S. Mishra (PI), Aniket Dutt (PhD student) University of North Texas Indrajit Charit (co-PI), Somayeh Pasebani (PhD student) University of Idaho

Project Manager: Dr. Richard Dunst Grant Number: DE-FE0008648 Performance Period: Sep. 2012 to Aug. 2014

2013 UNIVERSITY COAL RESEARCH CONTRACTORS REVIEW MEETING Pittsburgh, June 12, 2013

Objectives

- Develop a methodology for microstructural optimization of alloys genetic algorithm approach for alloy microstructural optimization using theoretical models based on fundamental micro-mechanisms, and
- Develop a new computationally designed Ni-Cr alloy for coal-fired power plant applications.

Robert R. Romanosky, National Energy Technology Laboratory , April 2012

Materials Limit the Current Technology

Background – A Bit of History

Timeline of dislocation-particle strengthening

- Dispersion strengthening identified as a potent mechanism for enhancing elevated temperature strength in the early works of Ansell and Weertman in 1950s
 - CONCEPT- Elastically hard particle repels dislocation
- Srolovitz and co-workers in 1980s
 - FUNDAMENTAL SHIFT- dislocation-particle interaction undergoes repulsive \rightarrow attractive transition at elevated temperatures >0.35 T_m

Questions

- Why did it take 40 years from the initial papers on dispersion strengthened materials and empirical development of threshold stress for creep to come up with physics based models?
- Why is the development of high temperature alloys incremental and primarily dependent on experiential approaches?

Is it because the field lacks proper computation tools and theoretical development!

Background

Summary of some of the key development made possible by TEM studies

Reference	Remarks
Nardone and Tien (1993)	First identification of departure side pinning.
Schroder and Arzt (1985)	Weak-beam micrographs showing clear dislocation contrast at the dispersoid.
Herrick et al. (1988)	First quantification of (a) percentage dislocation looped vs. attached, and (b) critical take-off angle as a function of temperature.
Liu and Cowley (1993)	Multiple dislocation-particle interaction; sharp kinks on the detached dislocations that straighten out.

A dispersion strengthened platinum alloy (Heilmaier *et al.* 1999)

AI-5 wt.% Ti alloy (Mishra and Mukherjee 1995)

Background – Theoretical Models

Development of dissociation and positive climb concepts

- (a) and (b) A schematic illustration of dissociation of dislocation at matrix-particle interface that can result in an attractive dislocationparticle interaction (Mishra et al. 1994).
- (c) Up and down climb concept of Shewfelt and Brown (1977) and Arzt and Ashby (1982).
- (d) A modified concept of 'positive climb' (Mishra and Mukherjee 1995).

Background – In-situ TEM

High Temperature In-situ TEM Straining Experiment and Detachment Angle Measurement

(a-f) Images captured from a video sequence recorded during the in situ straining. Dislocation movement through the array of Y_2O_3 particles at 250 °C (Deshmukh, Mishra and Robertson, 2010)

Background – In-situ TEM

Detachment Angle Measurement and Threshold Stress

Motivation and Path Forward

Synergy among strengthening mechanisms: Can 2+2 be greater than 4?

- Rosler and Baker (2000) have proposed a theoretical concept for the design of high temperature materials by dual-scale particle strengthening
- The creep strength parameter, \sum , is defined as

$$\sum = \sqrt{f_{z}} \left(1 + 2 \begin{pmatrix} 2 + l & R \end{pmatrix} f_{r}^{3-2} \right)$$

UNT Discussion of Strengthening Mechanisms

There are four major components to strengthening in the nanostructured nickel based alloys produced by mechanical alloying:

- grain boundary strengthening,
- solid solution strengthening
- dispersion strengthening, and
- composite strengthening.

Effect of temperature

Develop dual-scale strengthened Ni-Cr-Al₂O₃ alloys The chosen alloy system has:

- Cr for solid solution strengthening
- nano Cr₂O₃ and/or CrN particles of 2-3 nm diameter for dispersion (currently using nano-Y₂O₃) strengthening
- submicron Al₂O₃ of 0.5-1 micron diameter for composite strengthening through increase in modulus

What is the level of synergy?

 Does the load transfer effectively enhance the creep life for equiaxed reinforcement?

Overview of Proposed Work

Computational part

Strengthening Mechanisms

Low temperature strength

Strengthening mechanism	Equation
Grain size strengthening	$\sigma_y = \sigma_0 + Kd^{-0.5}$
Solid solution strengthening	$\Delta \sigma_s = \left(\sum k_i^{\frac{1}{n}} c_i\right)^n$
Dispersion strengthening	$\Delta \sigma_p = \frac{Gb\sqrt{f_d}}{d_p}$
Composite strengthening	$\sigma_c = V_p \sigma_p + V_m \sigma_m$
Load transfer coefficient	$\wedge \approx 1 + 2\left(2 + \frac{l}{R}\right)f_r^{\frac{3}{2}}$

High Temperature strength

Dislocation creep

Modified power law creep [1]

$$\dot{\varepsilon} = 8.3 * 10^8 \frac{DGb}{k_B T} \left[exp \left(-104 \sqrt{\frac{b}{\lambda}} \right) \right] \left(\frac{\sigma' - \sigma_0}{E} \right)^5$$

$$\sigma'=\sigma/{\scriptstyle\wedge}$$

Threshold stress

Dissociation and positive climb model [2]

$$\sigma_0 = 0.002 \ G \ \left(\frac{b}{r}\right) exp\left(20\frac{r}{\lambda}\right)$$

- 1. R. S. Mishra and A. K. Mukherjee, Light weight alloys for aerospace application III, TMS, (1995), 319
- 2. R.S. Mishra *et al.*, Philosophical Magazine A,1994, 69 (6), 1097-1109

GA optimization work

Cost function

$$J = \frac{\left[\sum_{i=S,D,HTS} w_i \left| \left(\frac{P_i}{(P_i)_{desired}}\right) - 1 \right| \right]}{n}$$

Various considerations were taken in order to minimize the cost function:

- 100 Individuals were considered in each generation.
- Rank scales were used for the fitness scaling. The rank of the fittest individual was 1, the next fittest was 2 and so on.
- Roulette method was used as a selection function to choose parents for the next generation.
- 10 best individuals survived to the next generation.
- Probability of crossover was chosen 0.85 and rest were produce via mutation.
- The optimization was running until 100 generations were completed or the cost function did not vary significant for 25 successive generations.

Notation used for variables:

- [w_S w_D w_{HTS}]= Weight factors for low temperature strength, ductility and high temperature strength properties.
- r (nm) is the radius of dispersoids particles.
- r_f (nm) is the radius of reinforced particles.
- f_r (%) is volume fraction of reinforcement.
- $f_d(\%)$ is volume fraction of dispersoids.

The optimization was carried out for two conditions:

```
I: 15 nm \le r \le 20 nm , 300 nm \le r<sub>f</sub> \le 400 nm , f<sub>r</sub> \le 15 %
II: 2 nm \le r \le 4 nm , 500 nm \le r<sub>f</sub> \le 1000 nm , f<sub>r</sub> \le 15 %
```

Desired properties

- low temperature 900 MPa
- ductility 10 %
- high temperature strength 100 MPa

G=76 GPa, σ_0 =17.4 GPa, K= 0.236 MNm^{-3/2}, b= 0.249 nm, T=1073 K, $\dot{\epsilon} = 10^{-9} s^{-1}$

GA results

II: 2 nm \leq r \leq 4 nm , 500 nm \leq r_{f} \leq 1000 nm , f_{r} \leq 15 %

Case	[1 0 0]	[10 1 1]	[1 1 1]	[1 1 10]	
r (nm)	2.997	2.961	3.44	2.578	
f _d (%)	3	3	4.089	2.578	
r _f (nm)	797	642	971	697	
f _r (%)	13.011	10.199	8	8.917	
LTS (MPa)	932.08	899.98	902.54	989.32	
Ductility	-	0.0906	0.0996	0.0967	
HTS (MPa)	-	132.0247	145.10	150.018	

Fig. 2 GA plots for case [10 1 1]

Summary for computational part

- Compilation of relevant theoretical and phenomenological model was done for low temperature strength, ductility and high temperature strength.
- The appropriate models were selected for further GA optimization work.
- The initial results showed:

	Dispersoid radius (nm) ~ 15		
Condition I	LTS (MPa) ~ 700		
	HTS (MPa) ~ 40		
Condition II	Dispersoid radius (nm) ~ 3		
	LTS (MPa) ~ 900		
	HTS (MPa) ~ 145		

Experimental Part

20

⇒ \	′ ₂ O ₃	5					
	Element	Net	Net	Element	Wt.%	Atom %	Atom %
	Line	Counts	Error	Wt.%	Error		Error
	Si K	2675	+/-85	2.469	+/-0.079	5.061	+/-0.161
	Cr K	16634	+/-222	19.383	+/-0.258	21.465	+/-0.286
	Fe K	592	+/-73	0.874	+/-0.108	0.901	+/-0.111
	Ni K	30669	+/-306	67.620	+/-0.675	66.320	+/-0.662
	ΥL	7522	+/-152	9.655	+/-0.195	6.253	+/-0.126
	Total			100.000		100.000	

The mean powder particle size was 25 mm.
The Ni powder particles were covered with yttrium oxide nanoparticles as indicated by EDS.

- Milling was done for 1 h, 2 h and 4 h and the XRD were used to characterize them.
- XRD patterns showed that 4 h was not long enough to make the yttria peaks disappear.
- Significant peak broadening and peak shift to higher angles were observed after 1 h milling.

UNT NORTH-TEXAS Discover the power of ideas. XRD patterns for milled Ni-20Cr-1.2Y₂O₃

Particles agglomeration

Un-milled

1 h

2 h

- Only after 1 h the mean particle size increased to 280 mm.
- Significant agglomeration happened in the milled powder
- Agglomeration will decrease the efficiency of mechanical alloying
- The fine particles increase the sintering efficiency and final density.
- Using a particle control agent (PCA) may decrease this agglomeration

Using PCA

- In literature, ethanol, poly ethylene glycol (PEG) and stearic acid were used as PCA.
- 1 wt% of ethanol, poly ethylene glycol (PEG) and stearic acid were added to the powder mixture and milled for 4 h.
- The mean particle size of the milled powder deceased using PCA and the agglomeration decreased.
- The efficiency of stearic acid to minimize the agglomeration was more than ethanol and PEG.

4 h- Ethanol

4 h- Stearic acid

⁴ h- PEG

- Ball milling experiments using a shaker mixer/mill (SPEX) of the Ni-20Cr-1.2Y₂O₃ (wt.%) alloy composition were carried out.
- Scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS) was performed to characterize the morphology and chemical characteristics of the milled powder.
- It has been determined that steel balls of 5 mm diameter, a ball to powder ratio (BPR) of 10:1 and a milling time of 2 h are as optimal milling conditions.
 A 1wt.% stearic acid was added to the powder mass during ball milling to prevent powder agglomeration.
- The structural parameters under the optimum conditions were found to be as following: average crystallite size (14 nm), lattice strain (0.003%), lattice parameter (0.3536 nm) and mean powder size (33.6 µm).

- Continue the GA effort
- Start dislocation simulation work
- Theoretical modeling/refinement of positive climb model
- Consolidation of ball milled powder
- Mechanical property evaluation

