

AB INITIO MODELING OF THERMOMECHANICAL PROPERTIES OF Mo-BASED ALLOYS FOR FOSSIL ENERGY CONVERSION

NETL Project DE-FE0004007

Wai-Yim Ching, PI, University of Missouri-Kansas City (Presented by Paul Rulis)

Contributors: Paul Rulis, Sitaram Aryal and Chamila Dharmawardhana

University Coal Research Contractors Review Conference Pittsburgh, PA June 11-13, 2013

Outline

- I. Background of the project
- II. Review of milestones
- III. Accomplishments in Year 1 & 2 (July 1, 2011 to June 30, 2012)
- IV. Results for Year 3 (July 1, 2012 to June 30, 2013)
 - a. Development of a method for temperature dependent mechanical properties using *ab initio* molecular dynamics.
 - b. Investigation of thermo-mechanical properties of composite alloys for the T1 phase (Mo_5Si_3).
 - c. Continuation on the construction of failure envelopes of Mo_5Si_3 and Mo_5Si_2 .
- V. Conclusions on the work for Year 3
- VI. Plan for the future

I. Background

★ The main objective of this 3-year project is to carry out extensive computational modeling of Mo-based alloys that can be used in a high temperature and high pressure environment.

- ♠ Specific aims are:
 - 1. To develop new methods for calculating thermomechanical properties at extreme conditions.
 - 2. To explore material properties within the Mo-Si-B system using a supercell approach.
 - 3. To understand the enhanced properties at the fundamental level.
 - 4. To establish effective collaborations with other research groups.

VI. Review of milestones and time line

Four milestones to be reached in 3 years for this project based on the tasks and subtasks outlined in the statement of project objectives (SOPO).

- [1] Mechanical properties and electronic structure of the 5 crystalline phases in the Mo-Si-B system. Milestone date: to be finished in first year. <u>Status as of June 2013</u>: work completed, paper published, milestone reached!
- [2] Development of the new computational method. Test of the computational codes on crystals. Milestone date: to be completed by the end of 2nd year. <u>Status as of June 2013</u>: new method development, results reported and paper published! Milestone reached!
- [3] Supercell modeling of composite alloys and identification of those with promising properties. Milestone date: to be completed by the end of 2nd year. <u>Status as of June 2013</u>: Composite alloys completed with substantial results. Research direction reevaluated based on these results. Milestone reached.
- [4] Application of new method to supercell models of composite alloys and exploration of new materials. Milestone date: to be completed by the end of 3rd year. <u>Status as of June 2013</u>: Substantial results obtained (<u>this talk</u>). Results will be analyzed and submitted for publication. Milestone reached.

III. Accomplishments in Year 1 and Year 2 (reported at the last review meetings)

• Electronic structure and interatomic bonding calculations in 5 crystals within the Mo-Si-B system: $MoSi_2$, Mo_3Si , Mo_2B , Mo_5Si_3 and Mo_5SiB_2 .

- ♠ Mechanical properties of the same 5 crystals.
- ♠ Calculations on the phonon spectra of the these crystals.
- ♠ Computational development for uniaxial tensile experiments.

★ Electronic structure and bonding: 5 types of bonding (Mo-Mo, Mo-Si, Mo-B, Si-Si, B-B) in 5 crystals.

★ Total bond order (BO)(represented by the size of the circles in the **figure** on the right) for five different types of the bonds in the 5 crystals. The total bond order for the crystal is shown at the bottom (x 1/2). Mo₅SiB₂ has the largest circle, or strongest total bonding.

★ These and other results suggest that addition of B can enhance the bonding and significantly improve the alloy properties.

✤ We focus our studies on the 2 crystals: Mo₅Si₃ (T1) and Mo₅SiB₂(T2). Both have b.c.t structure.

♠ Electronic structure and mechanical properties of supercell composite models between Mo₅Si₃ & Mo₅SiB₂

Calculated DOS at Fermi level in composite models of Mo₅SiB₂ in States/(eV-supercell).

Model	Total	Мо	Si	В
Mo ₅ Si ₃	145.05	122.93 (84.7)	22.12 (15.3%)	-
Mo ₁₆₀ Si ₆₄ B ₃₂	188.01	164.60 (87.6%)	19.74 (10.5%)	3.68 (1.9%)
Mo ₁₆₀ Si ₅₆ B ₄₀	179.75	158.02 (87.9%)	17.18 (9.6%)	4.55 (2.5%)
Mo ₁₆₀ Si ₄₈ B ₄₈	173.81	153.31 (88.2%)	14.92 (8.6%)	5.58 (3.2%)
Mo ₁₆₀ Si ₄₀ B ₅₆	170.19	151.47 (89.0%)	12.36 (7.3%)	6.36 (3.7%)
Mo ₅ SiB ₂	153.41	136.74 (89.1%)	10.00 (6.5%)	6.66 (4.3%)

Comments on composite models:

- 1. Both crystalline phases have lower $N(E_F) =>$ stability of pure crystalline phases.
- 2. $N(E_F)$ dominated by states from Mo.
- 4. $N(E_F)$ components of B and Si do not scale with B concentration.

Calculated elastic constants and bulk properties of composite models $Mo_5(Si_1-yBy)_3$. (in GPa).

Models	C ₁₁	C ₃₃	C ₁₃	C ₁₂	C ₄₄	C ₆₆	К	G	Ε	η	G/K
$Mo_{160}Si_{96}$	448.8	403.1	143.1	174.7	0.00	138.3	246.9	83.64	225.5	0.348	0.339
Mo ₁₆₀ Si ₆₄ B ₃₂	365.8	337.3	194.9	184.5	119.7	114.2	246.2	101.6	268.0	0.319	0.413
Mo ₁₆₀ Si ₅₆ B ₄₀	375.1	341.2	203.3	181.9	122.1	114.3	251.9	102.7	271.3	0.320	0.408
Mo ₁₆₀ Si ₄₈ B ₄₈	396.2	349.9	207.9	172.8	126.0	113.7	257.6	107.6	283.4	0.317	0.418
Mo ₁₆₀ Si ₄₀ B ₅₆	, 406.2	366.7	212.3	176.0	129.8	122.3	264.4	112.8	296.2	0.313	0.427
Mo ₁₆₀ Si ₃₂ B ₆₄	465.9	406.9	194.8	191.3	148.6	148.2	277.3	138.9	357.0	0.286	0.501

Variations of the mechanical properties as a function of B content in composites

Some conclusions on these composite model studies:

- (1) $C_{11} = C_{22}$ is larger than C_{33} and both much larger than the C_{ij} s in the non-axial directions.
- (2) The modulus values of the crystalline phases always larger than the composite models.
- (3) Bulk modulus K, Young's modulus E and shear modulus G scale roughly as the B/Si ratio y. E > K > G.
- (4) Individual variations in C_{ij} are related to the direction of applied strain to the model.
- (5) The Pugh ratio G/K for the composite models show small variations, but the end members (Mo_5SiB_2 and Mo_5SiB_2) have much larger value. G/K < 0.5 is expected to be tough and G/K > 0.5 will be more brittle.
- (6) It is not clear if the composite models of the two can give a tougher compound.

Composite models of replacing Mo by Nb in Mo₅Si₃ and Mo₅SiB₂.

Calculated on composite models $(Mo_{1-x}Nb_x)_5SiB_2$ and $(Mo_{1-x}Nb_x)_5Si_3$ for x = 0.05 (8 NB atoms) and x = 0.10 (16 Nb atoms). Also listed are the supercell models of Mo_5SiB_2 (last line) for comparison (in GPa).

Models	C ₁₁	C ₃₃	C ₁₃	C ₂₃	C ₄₄	C ₆₆	К	G	E	η	G/K
Mo ₁₆₀ Si ₉₆	468.8	403.1	143.1	174.7	0.00	138.3	246.9	83.64	225.5	0.348	0.339
Mo ₁₅₂ Nb ₈ Si ₉₆	442.3	356.8	163.6	157.4	100.9	128.4	242.3	114.2	296.2	0.296	0.471
$Mo_{144}Nb_{16}Si_{96}$	426.1	346.7	158.6	162.1	104.3	126.3	238.6	114.2	295.5	0.294	0.479
Models	C ₁₁	C ₃₃	C ₁₃	C ₂₃	C ₄₄	C ₆₆	К	G	E	η	G/K
Models Mo ₁₆₀ Si ₃₂ B ₆₄	C ₁₁ 465.9	C₃₃ 406.9	C₁₃ 194.8	C₂₃ 191.3	C₄₄ 148.6	C ₆₆ 148.2	К 277.3	G 138.9	E 357.0	ŋ 0.286	G/К 0.501
Models $Mo_{160}Si_{32}B_{64}$ $Mo_{152}Nb_8Si_{32}B_6$	C ₁₁ 465.9 ₅₄ 478.2	C₃₃ 406.9 396.2	C₁₃ 194.8 198.2	C₂₃ 191.3 167.5	C₄₄ 148.6 161.8	C ₆₆ 148.2 140.1	К 277.3 275.1	G 138.9 143.5	E 357.0 366 .8	ŋ 0.286 0.278	G/К 0.501 0.522

Some conclusions in the Nb substituting Mo composite model:

- (1) Significant increase in G and E but little variation in K for both types of composite models.
- (2) The increases are much larger in Mo_5Si_3 -based composites than in the Mo_5SiB_2 -based composites.
- (3) These increase in modulus values increases with Nb content.
- (4) An increase in G/K when Nb atoms are introduced with a large decrease in Poisson's ratio.
- (5) G/K less than 0.5 is expected to be tough and G/K greater than 0.5 will be more brittle. It is possible that Mo/Nb composite models may be more brittle than the two crystalline phases.

Construction of failure envelope in of Mo₅Si₃ and Mo₅SiB₂. (Preliminary results, work still in progress!)

♦ What is materials failure? How to precisely <u>define failure?</u> open question!
 ♦ In engineering, materials failure is addressed by constructing empirical <u>surfaces</u> in stress or strain spaces for failure prediction. Construction of such <u>surfaces</u> difficult.

♠ S<u>trength theories</u> have been devised to be the essential parts of the material constitutive behavior (Mroz 2003).

★ We proposed a method to construct the <u>failure envelope</u> of a crystal using data from <u>multi-axial tensile experiment</u> through <u>'theoretical' experiments</u> using *ab initio* simulations.

★ This is an example of multi-scale modeling connecting microscale and macroscale properties.

★ The strength of a material is characterized by a 3-d failure envelope (surface of failure points) in the stress space (σ_{xx} , σ_{yy} , σ_{zz}).

♠ The total area (or volume enclosed) of the envelope constitutes a <u>single</u> parameter representing the average strength of a materials under tensile deformation.

★ The <u>shape and color</u> of the envelope delineate the variations of the strength in different directions.

Multi-axial failure envelope in Mo_5Si_3 (237 data points)

Orthorhombic 256-atom supercell model of Mo_5Si_3 used for tensile experiment for failure envelope.

▲ Total volume enclosed: 2.800×10^4 (Å)³; Total surface area: 2.157×10^3 (Å)².

Multi-axial failure envelope of Mo₅SiB₂ (239 data points)

- ▲ Total volume enclosed: 5.473x10⁴(Å)³; (95.5% larger than in Mo₅Si₃). Total surface area: 3.424 10³(Å)²; (58.7% larger than in Mo₅Si₃).
 ▲ Mo₅SiB₂ is much stronger than Mo₅Si₅ based on failure envelope analysis.
- ♠ Mo₅SiB₂ is much stronger than Mo₅Si₃ based on failure envelope analysis.
 UMKC
 12

IV. Results for Year 3 (This presentation)

- a. Development of a method for temperature dependent mechanical properties using *ab initio* molecular dynamics.
- b. Investigation of thermo-mechanical properties of composite models for T1 phase (Mo_5Si_3).
- c. Continuation on the construction of failure envelopes of Mo_5Si_3 and Mo_5SiB_2 .

a. T-dependent mechanical properties using *ab initio* molecular dynamics (AIMD)

♠ Mechanical properties over broad temperature range are needed which are difficult to measure at ultra high T.

♠ Theoretical simulation is ideal to guide experiments.

♠ Present extrapolation techniques has only limited success at high T. AIMD can obtain high T properties far more accurately.

♠ Combination of AIMD and stress-strain methods can be used to obtain high T elastic and mechanical properties.

Method and procedures

Vienna *ab-initio* simulation Package (VASP):

- PAW-PBE potentials
- > Electronic convergence = 10^{-4} eV; Energy cutoff = 500 eV
- Γ point only calculation
- 2fs MD step
- MD on the Born Oppenheimer surface (exact KS-ground state)
- Canonical ensemble (NVT) and Nose-Hoover thermostat

$$\ddot{\tilde{\mathbf{r}}}_{i} = \frac{\tilde{\mathbf{F}}_{i}}{m_{i}\tilde{s}^{2}} - \frac{2\dot{\tilde{s}}\dot{\tilde{\mathbf{r}}}_{i}}{\tilde{s}},$$
$$\ddot{\tilde{s}} = \frac{1}{Q\tilde{s}} \left(\sum_{i} m_{i}\tilde{s}^{2}\dot{\tilde{\mathbf{r}}}_{i}^{2} - gk_{b}T_{0} \right)$$

Elastic Property Calculations:

- > Strain Stress analysis approach $\sigma_i = \sum_{j=1}^6 C_{ij} \varepsilon_j$
- Elastic bulk Properties using Voigt-Reuss-Hill (VRH) approximation

Results: T-dependent elastic coefficients and comparison with Experiment

- Temperature dependence of T2 agrees well with experiment.
- ➢ No experimental data exist for T1 except at RT, which also agree well.
- ➢ $C_{11} + C_{12} > C_{33}$ for both crystals. This implies bonding in the basal plane is grater than the [001] direction

T-dependent bulk mechanical properties and comparison with experiment

- ➤ "K" obtained from fitting to 3rd order Birch–Murnaghan EOS fails at higher T
- > T2 agrees well with the experimental trend from temperature dependence
- ➢ For T1 only R.T. values are found but still agrees
- Bulk properties of T2 is better than T1 which have about 20% higher K
 - Temperature dependence of both crystals follow similar trend

Thermal expansion properties and comparison with experiment

- Over estimation of volume by 1.5%
- Expected within GGA

 Both crystals appear to expand linearly as it is shown in literature

♠ T1 in good agreement for aaxis but less for c-axis. Not finding c/a ratio accurately enough in using NVT procedure.

 ★ T2 phase has less thermal expansion anisotropy, agrees well with the experiment.

▲ Assuming a linear dependence
 CTE and TEA can be calculated.

$$\alpha_a = \frac{1}{a_0} \frac{da}{dT}$$

✤ TEA is a excellent agreement.

^a (*Zhao et. al. Intermetallics* 12 (5), 493 (2004)), Temperature [290 – 1475 K] ^b (*Rawn et. al. Intermetallics* 9 (3), 209 (2001)) Temperature [300 – 1650 K]

^{° (}Chu et. al. Intermetallics 7 (5), 611 (1999)) Temperature [310 – 745 K]

Comparison of Coefficient of Thermal Expansion and Thermal Expansion Anisotropy in T1 and T2 phases

	α _a (10 ⁻⁶ K ⁻¹)	α _c (10 ⁻⁶ K ⁻¹)	(α_c/α_a)
Mo ₅ Si ₃ (present)	6.14	11.00	1.80
Mo ₅ Si _{2.82} B _{0.12} ^a	6.27	11.90	1.89
Mo ₅ Si _{2.97} B _{0.16} ^a	5.72	13.90	2.43
Mo _{4.81} Si ₃ ^a	6.89	12.64	1.83
Mo ₅ Si _{2.94} ^a	6.27	13.48	2.15
Mo ₅ Si ₃ ^c	5.20	11.50	2.21
Mo ₅ SiB ₂ (Present)	6.71	6.25	0.93
Mo ₅ SiB ₂ ^a	7.72	7.20	0.93
Mo ₅ SiB ₂ ^b	7.90	7.50	0.95

^a (*Zhao et. al. Intermetallics* **12** (*5*), *4*93 (2004)), Temperature [290 – 1475 K] ^b (*Rawn et. al. Intermetallics* **9** (*3*), *209* (2001)) Temperature [300 – 1650 K] ^c (*Chu et. al. Intermetallics* **7** (*5*), *611* (1999)) Temperature [310 – 745 K]

b. Investigation of thermo-mechanical properties of composite models for T1 phase (Mo_5Si_3).

★ The T1 phase (Mo_5Si_3) has undesirable high thermal expansion anisotropy (TEA). High TEA => high micro cracking => inefficient as coating material.

♠ Alloying can be used to reduce TEA while maintaining mechanical strength.

♠ Two alloys considered using AIMD.

♠ Mo substitution with Vanadium (V): (1) Experiments show Mo-V-Nb-Si alloying reduces TEA, (2) They have comparable crystal structures.

▲ Si substitution with Aluminum (Al): (1) Improve oxidation behavior, (2)
 Adequate mechanical properties.

Modeling of Alloy Systems

- ♠ Requires supercell to explore sufficient composition range.
- ♠ Needs high T structures. AIMD is the only choice for this task.
- ♠ NVT approach is too cumbersome as many compositions have to be explored and EOS is not an objective for this study.
- ▲ AIMD within the Isothermal—isobaric (NPT) ensemble as implemented in VASP is ideal for this problem.
- ▲ Langevin NPT dynamics: For a system of N particles with masses M with coordinates X(t):

$$M\ddot{X} = -\nabla U(X) - \gamma M\dot{X} + \sqrt{2\gamma k_B T M} R(t)$$

U(X): Interaction potential derived from DFT calculations R(t): Delta-correlated stationary Gaussian noise

 γ : Friction coefficient

 k_B : Bolzmann's constant

Reason for chose V substituting Mo: Mo_5Si_3 and V_5Si_3 have similar crystal structure

Compound	Structure type, space group lattice parameters	Atom	Site ^a	x	У	Z
Mo ₅ Si ₃	W ₅ Si ₃ structure type	Мо	16k	0.0786(6)	0.2247(6)	0
	I4/mcm	Мо	4b	0	1/2	1⁄4
	a = 9.650(2) Å	Si	8h	0.171(1)	0.671(1)	0
	c = 4.911(1) Å	Si	4a	0	0	1⁄4
V ₅ Si ₃	W ₅ Si ₃ structure type	V	16k	0.0755(2)	0.2237(2)	0
	I4/mcm	V	4b	0	1/2	1⁄4
	a = 9.4245(3) Å	Si	8h	0.1670(3)	0.6670(3)	0
	c = 4.7575(2) Å	Si	4a	0	0	1/4

^a Wyckoff notation indicating how often a particular site (e.g., site k) occurs in the unit cell.

Site	Mo-Mo (Å)
4b (chain site)	2.46
16k (non-chain site)	2.68
Elemental Mo	2.72

Atomic structure of Mo5Si3, showing two stacks of D8m unit cells viewed close to [001]. (Rawn et. al. 2005)

Reason for chose AI substituting Si in Mo_5Si_3 : It may improve oxidation behavior and high solubility.

Composition	Al%
Mo _{62.5} Si _{35.5} Al _{1.9}	5.2
Mo _{62.5} Si _{31.6} Al _{5.8}	15.6
Mo _{62.5} Si _{29.7} Al _{7.8}	20.8
Mo _{62.5} Si _{28.1} Al _{9.3}	25.0
Mo _{c2} Si ₂₆ Al ₁₁	30.2

The phase diagram indicates that up to ~ 15 at. % of AI substituting for Si in T1 phase at 1600°C. Solubility may further increase at higher temperatures.

Preliminary results on the CTE in Mo-V-Si and Mo-Si-Al alloys

- Trend in Mo-V-Si (left figure) agree well with experiment.
- CTE obtained from the data at different temperatures from AIMD.
- Mo-V-Si calculations may not be sufficiently converged.
- Mo-Si-Al (right figure) show a linear behavior of CTE as a function of composition. More data points needed.

c. Continuation on the construction of failure envelopes of Mo_5Si_3 and Mo_5SiB_2 .

♠ The work on the failure envelope construction has started early but is continuing effort.

♠ Most of the multi-axial simulation data have been obtained.

♠ Further analysis of the results needed in relation to the change in electronic structure.

♠ Manuscript on this work will be prepared.

V. Conclusions on the work for Year 3

♠ Proposed method is successful in capturing temperature dependent thermodynamic/mechanical properties of crystals.

♠ Calculated CTE and TEA are in excellent agreement with experiment.

- ♠ Temperature dependent C_{ii} for T2 is in good agreement with the experiment.
- ♠ The method may be applied to any materials.
- ♠ Mo-V-Si and Mo-Si-Al alloys can be used to reduce TEA of T1 phase.
- ★ Site preference of Mo-V-Si alloy system is explicitly studies. 4b site is preferred.
- ♠ Mo-Cr-Si alloys affect on CTE and its relation to interatomic bonding can be investigated.
- ★ We will extend the method to obtain electronic, mechanical and optical properties at high temperature.

VI. Plan for the future

- ▲ This project will be completed this year.
- ✤ Work in the same area will continue because of the opportunities offered by its successful conclusion.
- Most likely, we will engage in computational projects in other metallic systems investigating their properties under extreme conditions for specific applications of new and advanced materials.
- Extensive use of next generation of supercomputers absolutely necessary!

THANK YOU!

WE GREATLY APPRECIATE DOE-NETL SUPPORT!

PROGRAM MANAGER: DR. RICHARD DUNST

