

Development of Chemical Additives for Reducing CO₂ Capture Costs

Yang Li Lawrence Berkeley National Laboratory

Presented at 2013 NETL CO₂ Capture Technology Meeting July 8-11, 2013

AWRENCE BERKELEY NATIONAL LABORATORY

< 日 > (四 > (四 > (三 > (三 >)))

2

Lawrence Berkeley National Laboratory

Berkeley Lab at a Glance

13 - Nobel Laureates; 55 - Nobel Laureates trained here;

- 13 National Medal of Science members;
- 900 University students trained each year;
 - 4,200 Employees; 202 Site acreage

Bringing Science Solutions to the World

Climate Change and Environmental Sciences Energy Efficiency and Sustainable Energy Biological Sciences for Energy Research and Health Computational Science and Networking Matter and Force in the Universe Soft X-Ray Science for Discovery

Research areas

- Funding: DOE \$ 1,250 K
- Project period: 6/1/08 5/31/13
- Participants: Ted Chang PI

Y. Li - Chemist Project Scientist/Engr C. Y. Liao - Graduate student

- DOE/NETL Manager: Elaine Everitt/Dave Lang
- Objectives:

Developing a novel aqueous solvent system that will integrate amine, potassium carbonate, and ammonia to attain high CO_2 capture rates, reduce energy demands and capital costs.

STEPPURPOSE $12-15\% CO_2$
1: AmineHigh CO_2 capture rate CO_2 Precipitate KHCO_3 as a solid =
much less water than amine solution CO_2
 $3: KHCO_3/AmmoniaEnhancement of CO_2 production kinetics;
low heat capacity$

AWRENCE BERKELEY NATIONAL LABORATORY

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Process Description

- Amine Loop: Capturing CO₂ by amine aqueous solution, increasing absorption kinetics.
- Recirculation tank: Connecting Amine Loop and Carbonate Loop, transferring CO₂ from amine to carbonate to precipitate bicarbonate.
- Carbonate Loop: Transferring CO₂ from bicarbonate to ammonium catalysts, increasing kinetics & producing pressurized CO₂.

Amine-CO₂ + K₂CO₃ - Amine + KHCO₃

- Enhancement of CO₂ absorption kinetics, reducing absorber capital costs,
- reduction of processing water, reducing solvent regeneration energy demands,
- employment of stable and low heat capacity KHCO₃, reducing emissions of harmful products and sensible heat demands,
- reduction of reagent loss and equipment corrosion, reducing operation costs.

(日) (四) (日) (日) (日)

Challenges

Mitigation

- Could precipitate in absorber
 Control L/G and/or amine composition
- Solid/slurry handling

• Engineering system analysis

Performance Schedule

Task	June 2008 - May 2009	June 2009 - May 2010	June 2010 - May 2011	June 2011 - May 2012	June 2012 – May 2013
1. Project management and planning	100%				
2. Install walk-in fumehoods	100%				
Acquire system components	10078				
3. Set-up CO ₂ capture system	4000/				
Determine Raman efficiencies	100%				
4. Absorption of CO ₂	100%				
5. Chemical transformation		100%			
6. Reagent regeneration and CO ₂ production				10	0%
7. Process assessment and technology transfer					100%

AWRENCE BERKELEY NATIONAL LABORATORY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Integration of Absorption and Chemical Regeneration

 Sustainable 90% removal efficiency indicates the efficient chemical regeneration of amine.

•

- The addition of ammonium catalyst increased the CO₂ stripping rate under the same energy input
- Ammonium catalyst has potential, but more work is needed to overcome the volatilizing problem

Long-term semi-continuous stripping operation: make-up

Raman of Regenerated K₂CO₃ from the Stripper

- water in, and K_2CO_3 solution out, with ammonium catalyst
- Sufficient KHCO₃ solid was preloaded in the stripper

٠

• The ammonium carbamate peaks were undetectable.

.....

ERKELEY LA

 Ammonium species won't contaminate the solvent in the absorber.

Energy Penalty Determination

Two different methods:

With an autoclave

With a stripper

Energy Penalty Determination with Autoclave

Raman

High-pressure autoclave with functions of in-situ

• Under 1.6bar, the stripping energy was preliminarily determined to be 2130kJ/kg CO₂

Energy Penalty Determination with Stripper

- Long-term continuous stripping test
- The input energy by steam was measured
- From CO₂ stripping rate (left), and assuming the sensible heat recovery, the stripping energy was estimated (right)

- The stripping energy was preliminarily determined to be 2079kJ/kg CO₂ on average at steady state.
- Further parametric optimization and energy penalty demonstration are needed.

▲ □ ▶ ▲ □ ▶

< E

CO2 Absorption and Chemical Regeneration of Amine

- 1st absorption: Fresh BL aqueous solution
- 2nd absorption:

The solution in which K_2CO_3 was replenished after the KHCO₃ solid was filtrated

 3rd absorption: The solution in which K₂CO₃ was replenished for the second time after the KHCO₃ solid was filtrated

Samples were collected and analyzed by NMR.

Process Chemistry

AWRENCE BERKELEY NATIONAL LABORATOR

(I) (A) (A) (A)

Degradation and EH&S Impact

- Ammonium species were undetectable in the absorber;
- only trace amount of amine exists in the high-temperature stripper;
- amine doesn't have to undergo huge temperature swing.
 - Mitigating ammonia emission problems
 - Mitigating thermal degradation problems of amine
 - Mitigating the formation of nitrosamine in high temperature zone

 Nitrosamine's formation rate constant: about 10³ less at 50°C than 135°C.

Goldman et al. Environ. Sci. Technol. 2013, 47, 3528-3534.

Conceptual Process Configuration

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 のへで

rrrrr

BERKELEY LAB

lmì

Technology transfer

JIANTA@2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

- Berkeley Lab has licensed a worldwide patent to Jiantawn LLC
- Jiantawn LLC is teaming with Nexant, Alstom, IHI, and UCB to push the technology forward

After this project - team approach:

- Scale-up demonstration, a proposal was submitted in response to DE-FOA-0000785
- Techno-economic analysis
- EH&S implications

- The project was accomplished by Shih-Ger (Ted) Chang (PI), Yang Li (Chemist Project Scientist/Engr), and Chang-yu Liao (graduate student) NMR instrument support: Chris Canlas, College of Chemistry, U. C. Berkeley
- Special thanks to DOE/NETL project managers: Elaine Everitt and David Lang for their guidance and management
- This work was supported by DOE under Contract DE-AC02-05CH11231 through the NETL