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Berkeley Lab at a Glance
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Project Status

• Funding: DOE $ 1,250 K

• Project period: 6/1/08 - 5/31/13

• Participants: Ted Chang - PI
Participants: Y. Li - Chemist Project Scientist/Engr
Participants: C. Y. Liao - Graduate student

• DOE/NETL Manager: Elaine Everitt/Dave Lang

• Objectives:
Developing a novel aqueous solvent system that will
integrate amine, potassium carbonate, and ammonia to
attain high CO2 capture rates, reduce energy demands
and capital costs.



Concepts

• CO2 captured is transferred from one solvent to another by chemical methods
before the final solvent is thermally regenerated

STEP PURPOSE

1: Amine

2: K2CO3

3: KHCO3/Ammonia

12−15% CO2

CO2

CO2

~100% CO2

High CO2 capture rate

Precipitate KHCO3 as a solid =
much less water than amine solution

Enhancement of CO2 production kinetics;
low heat capacity



Process Description
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• Amine Loop:
Capturing CO2 by amine aqueous
solution, increasing absorption
kinetics.

• Recirculation tank:
Connecting Amine Loop and
Carbonate Loop, transferring CO2
from amine to carbonate to
precipitate bicarbonate.

• Carbonate Loop:
Transferring CO2 from
bicarbonate to ammonium
catalysts, increasing kinetics &
producing pressurized CO2.



Benefits

• Enhancement of CO2 absorption kinetics, reducing
absorber capital costs,

• reduction of processing water, reducing solvent
regeneration energy demands,

• employment of stable and low heat capacity KHCO3,
reducing emissions of harmful products and sensible heat
demands,

• reduction of reagent loss and equipment corrosion,
reducing operation costs.



Challenges and Mitigation

Challenges

• Could precipitate in absorber
absorber

• Solid/slurry handling

Mitigation

• Control L/G and/or amine composition

• Engineering system analysis



Performance Schedule

Task June 2008 − May 2009 June 2009 − May 2010 June 2010 − May 2011 June 2011 − May 2012 June 2012 − May 2013

1. Project management and planning

2. Install walk−in fumehoods

   Acquire system components

3. Set−up CO2 capture system

   Determine Raman efficiencies

4. Absorption of CO2

5. Chemical transformation

6. Reagent regeneration and CO2

   production

7. Process assessment and

   technology transfer

100%

100%

100%

100%

100%

100%

100%



Integration of Absorption and Chemical Regeneration

Absorber

Recirculation
tank

Solvent pump

Stirrer

• Long-term multi-cycle run (14 cycles of
absorption and chemical regeneration, and the
absorption lasted at least 15min per cycle.)

• L/G: ∼120 gallon/1000ft3
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• Sustainable 90% removal efficiency indicates
the efficient chemical regeneration of amine.



Thermal Regeneration Tests

• Semi-continuous stripping operation:
make-up water in, and K2CO3 solution
out

• Sufficient KHCO3 solid was preloaded
in the stripper
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Long-term stripping

w/ catalyst - after 40min,
the CO2 stripping rate decreased

indicating the lose of catalyst

• The addition of ammonium catalyst increased the CO2 stripping rate under the same energy input
• Ammonium catalyst has potential, but more work is needed to overcome the volatilizing problem



Raman of Regenerated K2CO3 from the Stripper

• Long-term semi-continuous stripping operation: make-up
water in, and K2CO3 solution out, with ammonium catalyst

• Sufficient KHCO3 solid was preloaded in the stripper
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• The ammonium
carbamate
peaks were
undetectable.

• Ammonium
species won’t
contaminate the
solvent in the
absorber.



Energy Penalty Determination

Two different methods:

With an autoclave With a stripper



Energy Penalty Determination with Autoclave

• High-pressure autoclave with functions of in-situ
Raman

• Water and KHCO3 were in the autoclave
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• Under 1.6bar, the stripping energy was preliminarily
determined to be 2130kJ/kg CO2



Energy Penalty Determination with Stripper

• Long-term continuous stripping test

• The input energy by steam was measured

• From CO2 stripping rate (left), and assuming the sensible heat
recovery, the stripping energy was estimated (right)

0 20 40 60 80 100 120
T (min)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

C
O

2 s
tri

pp
in

g 
ra

te
 (k

g/
m

in
)

0 20 40 60 80 100 120
T (min)

0

2000

4000

6000

8000

St
rip

pi
ng

 e
ne

rg
y 

(k
J/

kg
 C

O
2)

Preheating
phase

Steady state

Preheating
phase

Steady state

• The stripping energy was preliminarily determined to be 2079kJ/kg
CO2 on average at steady state.

• Further parametric optimization and energy penalty demonstration
are needed.



Process Chemistry

CO2 Absorption and Chemical Regeneration of Amine

• 1st absorption:
Fresh BL aqueous solution

• 2nd absorption:
The solution in which K2CO3 was
replenished after the KHCO3 solid was
filtrated

• 3rd absorption:
The solution in which K2CO3 was
replenished for the second time after the
KHCO3 solid was filtrated

Samples were collected and analyzed by NMR.



Process Chemistry

CO2 Absorption and Chemical Regeneration of Amine
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• The concentration of carbamate

increased, and then decreased during

2nd and 3rd absorption processes



Degradation and EH&S Impact
• Ammonium species were undetectable in the absorber;

• only trace amount of amine exists in the high-temperature stripper;

• amine doesn’t have to undergo huge temperature swing.

• Mitigating ammonia emission problems

• Mitigating thermal degradation problems of amine

• Mitigating the formation of nitrosamine in high temperature zone

Thermal Degradation Nitrosamine Formation
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8M Pz, α=0.4, t=165 ◦ C, Freeman et al., Ind. Eng. Chem. Res. 2012, 51, 7719.
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135 ◦ C, 0.1mol/dm3  PZ with phosphate buffer

100 ◦ C, 5, 1.7, 0.5 mol/dm3  PZ

80 ◦ C, 5 mol/dm3  PZ

50 ◦ C, 5 mol/dm3  PZ

• Nitrosamine’s formation rate constant:

about 103 less at 50◦C than 135◦C.

Goldman et al. Environ. Sci. Technol. 2013, 47, 3528-3534.



Conceptual Process Configuration
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Technology transfer

• Berkeley Lab has licensed a worldwide patent to Jiantawn LLC
• Jiantawn LLC is teaming with Nexant, Alstom, IHI, and UCB to push the technology forward



Plans for Future Development

After this project - team approach:

• Scale-up demonstration, a proposal was submitted in
response to DE-FOA-0000785

• Techno-economic analysis

• EH&S implications
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