FE0007632: Novel Inorganic/Polymer Composite Membranes for CO₂ Capture

PI: Winston Ho, Professor Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering

> Co-PI: Prabir Dutta, Professor Department of Chemistry The Ohio State University

Subcontractor: Steve Schmit, Director of R&D Gradient Technology

2013 NETL CO₂ Capture Technology Meeting Pittsburgh, PA, July 8 – 11, 2013

Funding and Performance Dates

- Total Budget: 10/01/2011 05/31/2015
 DOE: \$3,000K; OSU: \$679K; ODOD: \$500K
- BP1: 10/01/2011 05/31/2013
 DOE: \$899K; OSU: \$351K
- BP2: 06/01/2013 05/31/2014
 DOE: \$958K; OSU: \$131K; ODOD: \$277K
- BP3: 06/01/2014 05/31/2015
 DOE: \$1,144K; OSU: \$197K; ODOD: \$223K

Project Organization and Roles

Ohio State University

- Technical lead
- Concept development and execution
- Novel membrane synthesis/characterization
- Membrane scale-up/continuous fabrication
- Process demonstration
- Cost calculations

Winston Ho and Prabir Dutta

Project Objective

- Develop cost-effective design and manufacturing process for new membrane modules that capture CO₂ from flue gas with <35% COE increase and <\$40/tonne CO₂
- BP1
 - Bench scale membrane synthesis, characterization, downselection, and gas separation performance
 - Preliminary techno-economic analysis
- BP2
 - Bench scale membrane synthesis, characterization and gas separation performance to continue
 - Continuous membrane fabrication
 - Membrane module testing in lab (CO₂, N₂, MOISTURE)
 - Update techno-economic analysis
- BP3
 - 3 prototype modules for testing with simulated flue gas
 - Update techno-economic analysis
 - EH&S evaluation report will be developed

Process Proposed for CO₂ Capture from Flue Gas in Coal-Fired Power Plants

*Air Sweep first used by MTR

Membrane Approaches

- Two Composite Membrane Approaches
 - All Inorganic composite membrane
 - Zeolite-Y/Polymer composite membrane
 - + Amino based cover layer
 - + Non-Amino based cover layer

Current Project Success Criteria

• BP1

- For polymer support: 1000 GPU Permeance with Selectivity = 50
- Current state-ofthe-art 2000 GPU, selectivity = 50
- For ceramic support: 1000 GPU Permeance with Selectivity = 100

• BP2

- For polymer support:
 1500 2000 GPU Permeance with Selectivity = 50 75
- SO₂ effects on membrane (1 50 ppm), determine stability of amine membrane with time (100 hours), define limits (24 hours) if polishing unit fails

• BP3

For polymer support:
 2500 – 3000 GPU Permeance with Selectivity = 100 – 150

Budget Period 1

- Two Types of Inorganic Selective Layers Investigated
 - Alumina
 - Zeolite-Y

- Alumina Selective Layer on Two Supports
 - Alumina Selective Layer on Ceramic Support
 - Alumina Selective Layer on Polymer Support

All Inorganic Composite Membrane

- Highly permeable ceramic support prepared
- Rapid modification method of γ-alumina did not give adequate performance (separation factors <10)
- Low selectivity due to
 - Defects, Cracks
- Difficult to scale-up
 - Inorganic support
- Continuous fabrication
 - Not suitable
 - High cost

• Overall results led to down selection (October 2012) of Zeolite-Y/Polymer composite membrane

Zeolite-Y/Polymer Composite Membranes

- Zeolite-Y has good affinity to CO₂
- Two Polymer Strategies
 - Amine cover layer
 - Non-amine cover layer

Polymer support

- Suitable for continuous fabrication
- Low processing cost

Inorganic/Polymer Composite Membrane to Capture High Inorganic Performance and Low-Cost Polymer Processing

BP1 Accomplishments

- Zeolite/amine polymer composite membranes showed 1100 GPU with ~800 selectivity
 - Achieved BP1 target of 1000 GPU & 50 selectivity
- Significant Membrane Synthesis Improvements
 - Including discovery of rapid zeolite synthesis (< 1 hour) for continuous membrane fabrication
 - Ceramic/polymer spiral-wound membrane element exhibited at 2012 NETL meeting; Zeolite/polymer element also rolled successfully
 - Ceramic membrane processing also improved (20 min in lieu of 43 hours), but membrane performance poor
 - Two polymer approaches, amine and non-amine membranes demonstrated

 Preliminary techno-economic calculations (1100 GPU and >200 selectivity) showed ~46.0% COE increase and ~\$27.7/tonne CO₂ Air Stream Membrane - Techno-economic model published

 Proposed membrane process
 eliminates cryogenic distillation (compare to competition)

Transport Mechanism through Zeolite

13

Zeolite Nanoparticles Deposited on Polymer Support Successfully

Top View

Cross-section

Two Cover Layer Approaches for Zeolite/ Polymer Composite Membranes

• Amine cover layer

• Non-amine cover layer

Amine/Zeolite Seed Layer/Polymer Support

Platinum and gold used to provide conductivity for focused ion beam microscopy

Zeolite-Polymer Composite Membranes Containing Amine Cover Layer at ~102°C

Zeolite/Polymer Spiral-Wound Membrane Element Rolled Successfully

Zeolite-Polymer Composite Membranes with SO₂-Insensitive Cover Layer at 57°C

Additional Polymer Cover Layer Approaches for Defect Abatement

• PDMS (polydimethylsiloxane) cover layer

 AF (amorphous fluorinated) polymer cover layer

Polymer Cover Layers for Defect Abatement

Cost Calculations Assumptions

- CO₂ Permeance: 1100 GPU, CO₂/N₂ Selectivity >200
 - Based on present membrane lab data with amine membrane
- Operating Feed Pressure of 1.5 atm at ~100°C
 - Permeate pressure of 0.2 atm for Stage 1 and 1 atm for Stage 2 (air sweep)
 - Selectivity of >200 under these conditions has negligible effect on costs
 - Pressure recovery using turboexpander

Results

- Increase on Cost of Electricity (COE) = 46.0% with 1100 GPU Capture Cost = \$27.7/tonne CO₂
- If \dot{CO}_2 Permeance = 3000 GPU
 - COE increase is 38.2% with a capture cost of \$23.7/tonne CO₂

State-of-the-Art Amine Scrubbing

86% Increase on COE and Capture Cost of \$71/ton CO₂

BP1 Technical Research Needs

• Temperature Effect

- Amine Membrane operational at 102°C
- Compression from 1 atm to 1.5 atm needed for cost optimization
 - Temperature increases from 57°C to 100°C

• SO₂ Effects and Solutions

- Approach 1: SO₂-Sensitive Amine Polymer Cover Layer meets BP1 Goals
 - SO₂ Polishing Step required
- Approach 2: SO₂-Insensitive Polymer Cover Layer meets BP1 Permeance Goal
 - But selectivity (30) needs to be improved

Temperature Mitigation for CO₂ Capture from Flue Gas in Coal-Fired Power Plants

SO₂ Effects on Amine-containing Membranes

SO₂ Effects

- SO₂ at ≥10 ppm appeared to affect stability of membrane containing amine cover layer
- SO₂ at ≤1 ppm appeared not to affect stability of membrane with amine cover layer
- More study required between 1 – 10 ppm SO₂

Propose SO₂ Polishing Step before membrane

Approach 1: SO₂ Membrane Mitigation raised in BP 1

- Absorption into 20 wt% NaOH Solution
 - + Polishing step based on NETL baseline document
 ++ Estimated to be about <1.5% increase on COE
 - + Non-plugging, low-differential-pressure, spray baffle scrubber
 - + Efficiencies can reach >95%
 - + SO₂ can be reduced from 44 ppm to <2 ppm
- Commercial ZnO for SO₂ Clean-up to <0.1 ppm
- Commercial Heliodor Solution

Approach 2: Develop SO₂-Insensitive Polymer Cover Layer

X-ray Diffraction Patterns indicative of Zeolite Formation

Membrane Scale-up

Continuous Membrane Fabrication Machine at OSU

Plans for Future Testing/Development

- BP2
 - Bench scale membrane synthesis and characterization continue
 - + Membrane performance and stability (with SO₂)
 - Continuous membrane fabrication
 - Update techno-economic analysis
- BP3
 - 3 prototype modules for testing with simulated flue gas
 - Update and finalize techno-economic analysis
 - EH&S evaluation with Gradient Technology and AEP