Coal Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO₂ Capture

Award #: DE-NT0005289
PI: Liang-Shih Fan

Presenter: Samuel Bayham
Department of Chemical and Biomolecular Engineering
The Ohio State University

2013 NETL CO2 Capture Technology Meeting
July 11, 2013
Pittsburgh, PA
Clean Coal Research Laboratory at The Ohio State University

Coal-Direct Chemical Looping
- Cold Flow Model
- Sub-Pilot Scale Unit

Syngas Chemical Looping
- Sub-Pilot Scale Unit
- 250kW\textsubscript{th} Pilot Unit (Wilsonville, Alabama)

Calcium Looping Process
- Sub-Pilot Unit

CCR Process
- 120kW\textsubscript{th} Demonstration Unit

F-T Process
- HPHT Slurry Bubble Column
Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO₂ Capture

Period of Performance: 2009-2013

Total Funding ($3.98 million):

- U.S. Department of Energy, National Energy Technology Laboratory ($2.86 million)
- Ohio Coal Development Office ($300,000)
- The Ohio State University ($487,000)
- Industrial Partners ($639,000)

Major Tasks:

- Phase I: Selection of iron-based oxygen carrier particle - COMPLETE
- Phase II: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kWₜ scale and cold flow model study - COMPLETE
- Phase III: Demonstration of integrated CDCL system at 25 kWₜ scale and techno-economic analysis of CDCL process – IN PROGRESS

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-NT0005289 and the Ohio Coal Development Office of the Ohio Air Quality Development Authority under Contract Number CDO-D-08-02.
Coal-Direct Chemical Looping Process Development
Chemical Looping Process Concept

Reducer: $\text{MeO}_x + \text{Fuel} \rightarrow \text{MeO}_y + \text{CO}_2 + \text{H}_2\text{O}$

Combustor: $\text{MeO}_y + \text{Air} \rightarrow \text{MeO}_x + \text{Heat}$

Overall: Coal + Air \rightarrow CO$_2$ + H$_2$O + Heat

$y < x$
Coal-Direct Chemical Looping Process for Retrofit/Repower

The CDCL process can be also used for high efficient hydrogen production.
OSU CDCL Process Development

Phase I
More than 300 types of particle tested. A low cost, robust, highly reactive, and O2-conductive composite particle is obtained.

Phase II
300+ hours operation with >99% volatile conversion, >95% char conversion

Phase III
640+ hours operation with >99% solid fuel conversion, smooth solid circulation, gas sealing and in-situ ash removal

- TGA
- Fixed Bed Tests
- Bench Scale Tests
- Cold Model Tests
- Sub-Pilot Integrated Tests

Fuel Tested:
- Syngas
- Natural gas
- Biomass
- Met coke
- Lignite char
Phase III Results
Modes of CFB Chemical Looping Reactor Systems

Mode 1 - reducer: fluidized bed or co-current gas-solid (OC) flows

Mode 2 - reducer: gas-solid (OC) counter-current dense phase/moving bed flows

<table>
<thead>
<tr>
<th>Reducer</th>
<th>Mode 1</th>
<th>Mode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Regime</td>
<td>Bubbling, turbulent, fast fluidized, or spouted bed</td>
<td>Moving packed, or multistage fluidized bed</td>
</tr>
<tr>
<td>Gas Solid Contacting Pattern</td>
<td>Mixed/Cocurrent</td>
<td>Countercurrent</td>
</tr>
<tr>
<td>Controllability on Fuel and OC Conversions</td>
<td>Poor, due to back mixing and gas channeling</td>
<td>High</td>
</tr>
<tr>
<td>Maximum Iron oxide Conversion</td>
<td>11.1% (to Fe₃O₄)</td>
<td>>50% (to Fe & FeO)</td>
</tr>
<tr>
<td>Solids circulation rate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Ash Separation Technique</td>
<td>Separate Step</td>
<td>In-Situ</td>
</tr>
<tr>
<td>Subsequent Hydrogen Production</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Particle size, µm</td>
<td>100-600</td>
<td>1000-3000</td>
</tr>
<tr>
<td>Reducer gas velocity*, m/s</td>
<td><0.4</td>
<td>>1.0</td>
</tr>
<tr>
<td>Reactor size for the same fuel processing capacity</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Hydrodynamics effects on scaling up</td>
<td>Large</td>
<td>Small</td>
</tr>
</tbody>
</table>

*Reducer gas velocity calculated at 900 °C, 1 atm

Reducer Reactor Design

- **Stage 1** for gaseous volatiles
- **Stage II** for coal char

Enhancer Gas

- $4 \text{CO} + 4 \text{FeO}_x \rightarrow 4 \text{FeO}_{x-1} + 4 \text{CO}_2$
- $2 \text{CO}_2 + 2\text{C} \rightarrow 4 \text{CO}$
- $2 \text{CO} + 2 \text{FeO}_x \rightarrow 2 \text{FeO}_{x-1} + 2 \text{CO}_2$
- $\text{CO}_2 + \text{C} \rightarrow 2 \text{CO}$
- $\text{H}_2 + \text{FeO} \rightarrow \text{Fe} + \text{H}_2\text{O}$
- $\text{H}_2\text{O} + \text{C} \rightarrow \text{CO} + \text{H}_2$

Particle reduction:

- $\text{CH}_4 + \text{Fe}_2\text{O}_3 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{FeO}$

Coal devolatilisation:

- Coal \rightarrow C + C_xH_y

Char gasification and particle reduction:

- $\text{FeO} + \text{H}_2 \rightarrow \text{Fe} + \text{H}_2\text{O}$
- $\text{FeO} + \text{CO} \rightarrow \text{Fe} + \text{CO}_2$
- $\text{CO}_2 + \text{C} \rightarrow 2 \text{CO}$

Reaction Initiation:

- $\text{H}_2 + \text{FeO} \rightarrow \text{Fe} + \text{H}_2\text{O}$
- $\text{H}_2\text{O} + \text{C} \rightarrow \text{CO} + \text{H}_2$

Phase III: Integrated CDCL System Testing

- Fuel Design Input: 25 kW\textsubscript{th}
- Fully assembled and operational
- 640+ hours of operational experience
- 200+ hours continuous successful operation
- Smooth solid circulation
- Confirmed non-mechanical gas sealing under reactive conditions
Phase III: Integrated CDCL System Testing

Fuel Feedstock Studied

<table>
<thead>
<tr>
<th>Fuel Feedstock</th>
<th>Type</th>
<th>Fuel Flow (lb/hr)</th>
<th>Enhancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syngas</td>
<td>CO/H₂</td>
<td>0.1-1.71</td>
<td>N/A</td>
</tr>
<tr>
<td>Coal volatile/ Natural Gas</td>
<td>CH₄</td>
<td>0.1-0.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Coal char</td>
<td>Lignite</td>
<td>0.7-2.0</td>
<td>CO₂/H₂O</td>
</tr>
<tr>
<td></td>
<td>Metallurgical Coke</td>
<td>0.05-3</td>
<td>CO₂/H₂O</td>
</tr>
<tr>
<td>Coal</td>
<td>Sub-Bituminous</td>
<td>0.05-7.38 (25 kWₜₜ)</td>
<td>CO₂/H₂O</td>
</tr>
<tr>
<td></td>
<td>Bituminous</td>
<td>0.05-3</td>
<td>CO₂/H₂O</td>
</tr>
<tr>
<td></td>
<td>Anthracite</td>
<td>0.2-0.7</td>
<td>CO₂/H₂O</td>
</tr>
<tr>
<td></td>
<td>Lignite</td>
<td>2.84-6.15 (20 kWₜₜ)</td>
<td>CO₂</td>
</tr>
<tr>
<td>Biomass</td>
<td>Wood pellets</td>
<td>0.1</td>
<td>CO₂</td>
</tr>
<tr>
<td>Coke</td>
<td>Petroleum Coke</td>
<td>1.98-5.95</td>
<td>CO₂/H₂O</td>
</tr>
</tbody>
</table>

- Combined >940 hours of sub-pilot operational experience
- Achieved high conversion on all fuel feedstock
- Successful results for all coal/coal derived feedstock tested
Phase III: Integrated CDCL System Testing

200+ Sub-Pilot Continuous Run Results
Once-Through Reducer Carbon Conversion Profile

- Continuous steady carbon conversion from reducer throughout all solid fuel loading (5-25 kW_{th})
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO, CO₂, and CH₄ in combustor = negligible carbon carry over, nearly 100% carbon capture
Phase III: Integrated CDCL System Testing

Parametric Studies Performed

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Fuel Flow (g/min)</th>
<th>Enhancing Gas Flow (L_n/min)</th>
<th>CO₂ Purity (%)</th>
<th>Reducer Carbon Conv. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subbituminous</td>
<td>23</td>
<td>5.0, CO₂</td>
<td>99.7%</td>
<td>96.9%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>23</td>
<td>3.0, CO₂</td>
<td>99.6%</td>
<td>96.5%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>22</td>
<td>1.0, CO₂</td>
<td>99.0%</td>
<td>88.0%</td>
</tr>
<tr>
<td>Subbituminous, lower port</td>
<td>22</td>
<td>1.0, CO₂</td>
<td>98.0%</td>
<td>~100%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>32</td>
<td>5.0, CO₂</td>
<td>99.7%</td>
<td>96.9%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>46</td>
<td>5.0, CO₂</td>
<td>99.7%</td>
<td>96.9%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>56</td>
<td>5.0, CO₂</td>
<td>99.5%</td>
<td>96.9%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>68</td>
<td>5.0, CO₂</td>
<td>98.5%</td>
<td>99.9%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>15</td>
<td>5.0, H₂O</td>
<td>98.9%</td>
<td>97.8%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>22</td>
<td>5.0, H₂O</td>
<td>94.0%</td>
<td>99.8%</td>
</tr>
<tr>
<td>Subbituminous</td>
<td>38</td>
<td>5.0, H₂O</td>
<td>99.3%</td>
<td>96.3%</td>
</tr>
<tr>
<td>Lignite</td>
<td>22</td>
<td>5.0, CO₂</td>
<td>99.6%</td>
<td>97.7%</td>
</tr>
<tr>
<td>Lignite</td>
<td>46</td>
<td>5.0, CO₂</td>
<td>99.6%</td>
<td>96.3%</td>
</tr>
</tbody>
</table>

Parameters studied include:
- Fuel flow rate
- Fuel type
- Enhancer gas type (CO₂, H₂O)
- Enhancer gas flow rate
- Injection location

Phase III: Integrated CDCL System Testing

Unsteady State Studies Performed

Effect of enhancing gas on approach to steady state

Effect of coal injection on system temperatures and pressures

Bayham et al., *Energy Fuels* (2013) 27, 1347–1356
Supporting Work: Phases I, II
Phase I: Oxygen Carrier Particle Development

Primary Metal Properties

<table>
<thead>
<tr>
<th>Redox Pair</th>
<th>Fe₂O₃-Fe₃O₄</th>
<th>Fe₂O₃-Fe</th>
<th>CuO-Cu₂O</th>
<th>CuO-Cu</th>
<th>CaSO₄-CaS</th>
<th>Mn₃O₄-MnO</th>
<th>NiO-Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Mode</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Melting point, °C</td>
<td>1566-1538</td>
<td>1566-1535</td>
<td>1326-1235</td>
<td>1326-1085</td>
<td>1460-2525</td>
<td>1567-1650</td>
<td>1955-1455</td>
</tr>
<tr>
<td>Cost, $/ton¹</td>
<td>319</td>
<td>319</td>
<td>7679</td>
<td></td>
<td>27</td>
<td>1000</td>
<td>21804</td>
</tr>
<tr>
<td>Recyclability Test, cycles</td>
<td>>100</td>
<td>>100³</td>
<td>>33⁴</td>
<td></td>
<td><5</td>
<td>5⁵</td>
<td>5⁵</td>
</tr>
<tr>
<td>Theoretical OCC, kg O₂/kg</td>
<td>0.033</td>
<td>0.3</td>
<td>0.1</td>
<td>X</td>
<td></td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Conversions²</td>
<td>50-60%</td>
<td>60%</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Support, %</td>
<td>X</td>
<td>40-60</td>
<td>60-80</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual OCC, kg O₂/kg</td>
<td>0.06-0.11</td>
<td>0.012-0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crushing Strength, N</td>
<td>>60</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Primary material cost, dollars in 2010 from US Geological Survey;
2. The actual conversion limited by both thermodynamics and kinetics;
Phase I: Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal

\[\Delta G, \text{kcal/mol } O_2 \]

- \(\text{Mn}_2\text{O}_3 \)
- \(\text{CuO} \)
- \(\text{Cu}_2\text{O} \)
- \(\text{Fe}_2\text{O}_3 \)
- \(\text{NiO} \)
- \(\text{CaSO}_4 \)
- \(\text{Fe}_3\text{O}_4 \)
- \(\text{H}_2\text{O} \)
- \(\text{FeO} \)
- \(\text{CO} \)
- \(\text{FeTiO}_3 \)

\[\text{P}_{\text{O}_2} = 0.21 \text{ atm, Ambient Air} \]
\[\text{P}_{\text{O}_2} = 0.01 \text{ atm} \]

\[\frac{\text{P}_{\text{CO}}}{\text{P}_{\text{CO}_2}} = 5/995 \]

Mode 1 Range

Mode 2 Range

Full Air Conversion

Full Fuel Conversion

Hydrogen Production
Phase I: Oxygen Carrier Particle Development

OSU Particle (over 300 particles) Performance

High Reactivity

High Carbon Deposition Tolerance

High Recyclability

High Pellet Strength
Phase II: Reducer Reactor Design and Testing

Phase Diagram – Thermodynamic Restrictions

Shaded area is not reducer operation zone

Operating Equation for Moving Bed Reducer

Countercurrent moving bed: straight operation line with negative slope

Similarly, Concurrent fluidized bed: straight operation with positive slope

Phase II: Reducer Reactor Design and Testing

Operation Diagram

The operating line is straight when feeding ratio is fixed: solid line represents countercurrent moving bed operation, dash line represents co-current fluidized bed operation.

Phase II: Reducer Reactor Design and Testing

Stage I – Volatile Conversion

Stage II – Char Conversion

Summary of Bench Scale Unit Testing Results

<table>
<thead>
<tr>
<th>Type of Fuel</th>
<th>Stage I - Coal Volatile</th>
<th>Stage II - Coal Char</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂, H₂, CH₄</td>
<td>Lignite char</td>
<td>Bituminous</td>
</tr>
<tr>
<td>Fuel Conversion, %</td>
<td>99.9</td>
<td>99.8</td>
<td>94.9</td>
</tr>
<tr>
<td>CO₂ purity, %</td>
<td>99.9</td>
<td>98.8</td>
<td>99.23</td>
</tr>
</tbody>
</table>

- Conducted in co-current mode, no gas analyzer was used to monitor the CO₂ purity.

300+ hours operation with >95% conversions of various types of fuel.
Techno-Economic Analysis
Systems Analysis Methodology

- Performance of CDCL plant modeled using Aspen Plus® software
- Results compared with performance of conventional pulverized coal (PC) power plants with and without CO₂ capture
 - U.S. Department of Energy, National Energy Technology Laboratory; *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity* (November 2010)
 - Case 11 – Supercritical PC plant without CO₂ capture ("Base Plant")
 - Case 12 – Supercritical PC plant with MEA scrubbing system for post-combustion CO₂ capture ("MEA Plant")
- All plants evaluated using a common design basis
 - 550 MWₑ net electric output
 - Illinois No. 6 coal: 27,113 kJ/kg (11,666 Btu/lb) HHV, 2.5% sulfur, 11.1% moisture as received
 - Supercritical steam cycle: 242 bar/593°C/593°C (3,500 psig/1,100°F/1,100°F)
 - ≥ 90% CO₂ capture efficiency (MEA and CDCL Plants)
 - CO₂ compressed to 153 bar (2,215 psia)
- Results are preliminary, will be used to guide further design improvements
Process Simulation and Analysis

Aspen Plus® Modeling Results

<table>
<thead>
<tr>
<th></th>
<th>Base Plant</th>
<th>MEA Plant</th>
<th>CDCL Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Feed, kg/h</td>
<td>185,759</td>
<td>256,652</td>
<td>207,072</td>
</tr>
<tr>
<td>CO₂ Emissions, kg/MWh(_{\text{net}})</td>
<td>802</td>
<td>111</td>
<td>28</td>
</tr>
<tr>
<td>CO₂ Capture Efficiency, %</td>
<td>0</td>
<td>90.2</td>
<td>97.0</td>
</tr>
<tr>
<td>Solid Waste,(^a) kg/MWh(_{\text{net}})</td>
<td>33</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>Net Power Output, MW(_{e})</td>
<td>550</td>
<td>550</td>
<td>548</td>
</tr>
<tr>
<td>Net Plant HHV Heat Rate, kJ/kWh (Btu/kWh)</td>
<td>9,165 (8,687)</td>
<td>12,663 (12,002)</td>
<td>10,248 (9,713)</td>
</tr>
<tr>
<td>Net Plant HHV Efficiency, %</td>
<td>39.3</td>
<td>28.5</td>
<td>35.2</td>
</tr>
<tr>
<td>Energy Penalty,(^b) %</td>
<td>-</td>
<td>27.6</td>
<td>10.6</td>
</tr>
</tbody>
</table>

\(^a\)Excludes gypsum from wet FGD. \(^b\)Relative to Base Plant; includes energy for CO₂ compression.
First-Year Cost of Electricity

<table>
<thead>
<tr>
<th></th>
<th>Base Plant</th>
<th>MEA Plant</th>
<th>CDCL Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Capital ($/MWh)</td>
<td>31.7</td>
<td>59.6</td>
<td>44.2</td>
</tr>
<tr>
<td>Fixed O&M ($/MWh)</td>
<td>8.0</td>
<td>13.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Coal ($/MWh)</td>
<td>14.2</td>
<td>19.6</td>
<td>15.9</td>
</tr>
<tr>
<td>Variable O&M ($/MWh)</td>
<td>5.0</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>TOTAL FIRST-YEAR COE ($/MWh)</td>
<td>58.9</td>
<td>100.9</td>
<td>78.4</td>
</tr>
</tbody>
</table>

$\Delta = +71\%$

$\Delta = +33\%$

Techno-Economic Analysis of a Coal Direct Chemical Looping Power Plant with Carbon Dioxide Capture.
Accomplishments

Completed

• >640 hrs of integrated 25 kW\textsubscript{t} sub-pilot scale operations achieving 90-99+% coal conversion

• The longest demonstration to date is >200 hours continuous with smooth operations and high fuel conversions.

• The CDCL process has the potential to meet DOE’s goal of \(\geq 90\%\) CO\textsubscript{2} capture at no more than a 35% increase in cost of electricity

Future work

• Test other fuels such as woody biomass and corn stover

• Work closely with B&W to scale-up to pilot plant (3 MW\textsubscript{th})
Partners

Government Agencies

• DOE/NETL: Bruce Lani, Timothy Fout, David Lang
• OCDO/ODSA: Chad Smith, Greg Payne

Industrial Collaborators

• Babcock & Wilcox (B&W): Tom Flynn, Luis Vargas, Doug Devault, Bartev Sakadjian and Hamid Sarv
• Clear Skies Consulting LLC: Bob Statnick
• CONSOL Energy: Dan Connell, Richard Winschel, and Steve Winberg
• Air Products: Robert Broekhuis, Bernard Toseland
• Shell/CRI
Thanks