Gelled Ionic Liquid-Based Membranes

Rajinder P. Singh, Kathryn A. Berchtold, Richard D. Noble, Douglas L. Gin, Abhoyjit Bhown and Laura Nereng

2013 NETL Carbon Capture Technology Meeting
Pittsburgh, 11th July, 2013
Project Objectives and Goals

- A carbon-capture membrane with CO$_2$ permeance approaching 5,000 GPU and moderate CO$_2$/N$_2$ selectivity could significantly reduce cost of post-combustion carbon capture from flue gas.

- Room-temperature ionic liquids (RTILs) are attractive materials due to high permeability (>1000 barrer) and good CO$_2$/N$_2$ permselectivity (20–50).

- To meet performance target, RTILs must be immobilized as a continuous, defect-free thin film, ca. 100 nm thick (permeability dependent), on a porous support - achievable via industrially relevant coating/fabrication techniques.
Project Overview

- Project Start Date: Feb. 1, 2011
- End Date: Jan. 31, 2014
- Total funding: $3,927,591
 - DOE ARPA-E: $3,142,071
 - DOE cost share numbers: $785,520 (of which $600,000 is provided by TOTAL, S.A.)

- This work is a result of a collaboration between the
 - University of Colorado (CU), Boulder
 - Los Alamos National Laboratory (LANL)
 - Electric Power Research Institute (EPRI)
 - 3M
 - TOTAL, S.A.
Project Team

Richard Noble Kathryn Berchtold Abhoyjit Bhowan
Douglas Gin Rajinder Singh Joseph Swisher
Rhia Martin Kevin Dudeck
Will McDanel Cynthia Welch
Matt Cowan
Trevor Carlisle
A. Lee Miller II

Ping Liu
Scott Litzelman
Karma Sawyer
Mark Hartney
Ashish Khandpur
Laura Nereng
Bill Dudley
Cemal (Sam) Duru
Dale R. Lutz
Jinsheng Zhou
John Schmidt
Kannan Seshadri
Krzysztof Lewinski
Michelle Mok
Key Milestones

| BP01 | **Title:** Assessment of Ability of Proposed Technology to Meet Project Permeance & Selectivity Targets
Criteria:
- Demonstration of ability to increase permeance by ≥ an factor of 2 over benchmark data using material modifications and membrane fabrication optimization
- Demonstrate membrane CO$_2$/N$_2$ selectivity ≥ 20
- Demonstrate membrane adhesion at predicted process temperatures (>50 °C)
Completed |
|---|---|
| BP02 | Down-select and rank selective layer materials with highest potential to achieve project goals and DOE Program targets
Completed |
| BP02 | Down-select and rank selective layer materials and material/coating methodology combinations with highest potential to achieve project goals and DOE Program targets
Completed |
| BP02 | Report results of preliminary membrane process design based on initial membrane performance data
In-progress |
| BP03 | **Title:** Assessment of Ability of Proposed Technology to Meet ARPA-E, DOE-FE NETL Program Targets (cost and carbon emissions reduction) as Defined via Systems & Economic Analysis
Criteria: Demonstration of ability to meet project’s permeance and selectivity targets (5000 GPU, CO$_2$/N$_2$ selectivity ≥ 20).
In-progress |
Project Tasks

- **Selective Layer Design Synthesis & Evaluation**
 - Tailored gel-RTILs, RTIL/poly(RTIL) composites, incorporation of task-specific CO$_2$ complexation chemistries
 - Optimize permeability/selectivity and material properties of Selective Layer Materials

- **Ultra-Thin Membrane Fabrication, Optimization, & Testing**
 - Commercially viable fabrication techniques development for new RTIL-based materials - to enable controlled ultra-thin SL deposition on commercially attractive support platforms
 - Ultrasonic spray coating technique (USCT)
 - Roll to roll casting

- **Membrane, Systems, and Economic Analyses**
Project Overview

Selective Layer Material Design and Synthesis

CO₂ Permeance ≥ 5,000 GPU
CO₂/N₂ selectivity ≥ 20

Ultra-Thin Membrane Fabrication

Systems Process Modeling
Membrane Terminology

- **Permeability** is a *material* property: describes rate of permeation of a solute through a material, normalized by its thickness and the pressure driving force.

 \[
 \text{Permeance} = \frac{\text{Permeability}}{\text{Thickness}} = \frac{\text{Flux}}{\Delta p}
 \]

- **Permeance** is a *membrane* property: calculated as solute flux through the membrane normalized by the pressure driving force (but not thickness).

- **Ideal selectivity** describes separation factor: the ratio of permeability (or permeance) of two different components in a membrane, and is a *material* property.

- High membrane permeance is achieved by both material selection (high permeability) and membrane design (low thickness).
High Permeance – Economic Advantages

- Membrane separation systems with high CO$_2$ permeance and moderate CO$_2$/N$_2$ selectivity are desirable.
- Estimated capture cost is proportional to CO$_2$ permeance for CO$_2$/N$_2$ selectivities greater than 30.

“Higher CO$_2$ permeance will lead to reduction in capture cost”

Preliminary Economic Evaluation

Task 1: Benchmarking with MTR results

Single counter current sweep stage

<table>
<thead>
<tr>
<th>Case</th>
<th>Membrane area (MM m²)</th>
<th>Total power MTR* (MW)</th>
<th>Total power This work (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry feed</td>
<td>4.3</td>
<td>46.4</td>
<td>44.6</td>
</tr>
<tr>
<td>Wet feed</td>
<td>3.9</td>
<td>47.2</td>
<td>53.1</td>
</tr>
</tbody>
</table>

*T. C. Merkel et al., JMS, 359, 2010, 126-139.

The MTR process

- **Total Area**: 1.3 MM m²
- **Blower pressure**: 2 bar
- **Capture Rate**: 90%
- **Vacuum pressure**: 0.2 bar
- **Total power required (MW)**
 - **MTR**: 97
 - **This work**: 102
Bulk RTIL Membrane Materials Overview

Gelled RTIL

- **Linear Poly(RTIL)/RTIL Composites**
- **Photo-curable Poly(RTIL)s and Composites**
- **PVDF-co-HFP/RTIL Composites**

Evolution of Materials

<table>
<thead>
<tr>
<th>Bulk Material:</th>
<th>Gelled RTIL</th>
<th>Linear Poly(RTIL)/RTIL</th>
<th>Photo-curable Poly(RTIL)/RTIL</th>
<th>PVDF-co-HFP/RTIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIL Loading (wt%):</td>
<td>98</td>
<td>40</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>CO₂ Permeability (barrers):</td>
<td>950</td>
<td>105</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>CO₂/N₂ Selectivity:</td>
<td>21</td>
<td>21</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Physical Properties:</td>
<td>Mechanically weak</td>
<td>Brittle</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Fabrication Approach 1: Ultrasonic Spray Coating

- Ultra-Thin Membrane Fabrication, Optimization, & Testing

 - Commercially viable fabrication technique development using ultrasonic spray-coating technology (USCT) -- enables controlled ultra-thin SL deposition on commercially attractive support platforms
 - Maximize **Permeance Attainable with Selectivity Retention** -- defect mitigation with cohesive coating achieved
USCT-based Deposition

- Semi-automated small scale ultrasonic spray coating system for ultra-thin film deposition on tubular and planar substrates with *in-situ* processing

- System control parameters include:
 - Liquid flow rate
 - Spray geometry/profile
 - Coating profile / Raster speed
 - Substrate temperature
 - In-situ IR and UV irradiation
 - LabView® automation
 - Self-contained enclosure
RTIL based Ultra-thin Coating Development

- Developed methods to fabricate RTIL based selective layers on commercially attractive porous polymer supports
 - Numerous membranes fabricated to understand the effects of various coating parameters on selective layer deposition and its gas permeation characteristics

- Coating process optimization lead to 100-150 nm defect free coatings

Both images taken at same magnification
Ultra-thin Membrane Characterization

- Dramatic influence of coating parameters on membrane performance
 - Permeability = 67.3 barrer

- Demonstrated defect-free poly(RTIL) composite membrane with CO₂ permeance of 317 GPU – approximately 212 nm effective thickness

- Fabricated numerous membranes with CO₂ permeance ≥ 500 and near ideal CO₂/N₂ selectivity ≥ 10
Controlling Membrane Fabrication Process

- Limited SEM thickness data set used for correlation with USCT coating thickness parameter (inset plot)

- Excellent correlation achieved between CO$_2$ permeance and estimated SL thickness

- Estimated permeability from composite membranes (72.3 barrer) in good agreement with CU permeability (67.3 barrer). (Membranes with CO$_2$/N$_2$ > 5 used in the analysis)

\[y = 72.3x^{-1} \quad R^2 = 0.9611 \]

\[y = 67.3x^{-1} \]

Fabrication of PSVI/RTIL Composite Membranes

- High fraction of free RTIL (>50%) required to achieve high permeability
- Fabrication of PSVI-based composite membranes with varying RTIL ratios using USCT yields membranes with high CO₂/N₂ selectivity
- However, the permeances are much lower than expected from SILM data
 - With target thicknesses 1-2 µm, permeances are expected to be in the order of >100 GPU
 - Our best membrane fabricated using 80/20 PSVI/emim-Tf₂N, with CO₂/N₂ selectivity of 33, only has CO₂ permeance of 25 GPU (estimated selective layer thickness = 2 µm)

All data: \(\Delta p = 1 \text{ bar}, T = 25^\circ\text{C} \)
P(VDF-HFP)/emim-Tf$_2$N Composite Membranes

Fabricated and evaluated p(VDF-HFP)/emim-Tf$_2$N composite membranes containing 40 and 60% emim-Tf$_2$N

- Selective layer thickness varied from 0.2 to 1.8 µm
- High CO$_2$/N$_2$ selectivity obtained for 60/40 emim-Tf$_2$N/p(VDF-HFP) composite membrane with 0.9 µm thick selective layer!
- CO$_2$ permeance lower than that estimated from the CO$_2$ permeability obtained from bulk p(VDF-HFP)-RTIL composite films
Achieving High Permeance??

- Composite membranes fabricated by USCT have significant lower permeance than that estimated from the permeability data.
 - Permeability of composite membrane with 60% free RTIL similar to permeability of film containing 20% RTIL
 - Possible phase separation or RTIL migration to the support with solvent during coating leading to lower RTIL concentration in the selective layer.
 - Pore penetration in the support pores increasing effective thickness.
Fabrication Approach 2: Roll to Roll Casting

- Direct single or multi-step coating on nano-porous substrate
Direct Casting on Porous Substrate

- Selectivity observed - but low permeance
 - SEM cross sections show much thinner coatings than thickness targeted
 - Pore infiltration?
 - Free RTIL being carried into substrate by solvent?

<table>
<thead>
<tr>
<th>Sample</th>
<th>Target Thickness</th>
<th>Est. Obs. Thickness</th>
<th>CO₂ Permeance</th>
<th>N₂ Permeance</th>
<th>CO₂/N₂ Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-PVDF Comp.</td>
<td>2.8 um</td>
<td>235 nm</td>
<td>93</td>
<td>30</td>
<td>3.1</td>
</tr>
<tr>
<td>11B-PVDF Comp.</td>
<td>1.9 um</td>
<td>235 nm</td>
<td>73</td>
<td>30</td>
<td>2.4</td>
</tr>
<tr>
<td>16-PolyRTIL Comp.</td>
<td>2.8 um</td>
<td>266 nm</td>
<td>292</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>17-PolyRTIL Comp.</td>
<td>1.5 um</td>
<td>208 nm</td>
<td>292</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>20-PolyRTIL Comp.</td>
<td>1.5 um</td>
<td>117 nm</td>
<td>7730</td>
<td>917</td>
<td>8.4</td>
</tr>
<tr>
<td>24A-PolyRTIL Comp.</td>
<td>1.5 um</td>
<td>-</td>
<td>459</td>
<td>40</td>
<td>12</td>
</tr>
</tbody>
</table>

- (10) PVDF Composite
- (16) PolyRTIL Composite
- (20) PolyRTIL Composite

†~235 nm
‡~266 nm
‡~117 nm
Newly Encountered Challenges for Thin Film Casting

- Discrepancy observed between measured bulk materials and thin film membrane properties
 - Hypothesis: Free RTIL being lost to porous substrate leaving majority polymer in coating
 - Elemental x-ray mapping confirms presence of fluorine in substrate

Future Directions:
- Optimize processing with RTIL rewetting procedure
- Analytical characterization to understand RTIL-poly(RTIL) interactions
Preliminary Results: Secondary Coating & Post-Treatment

Experiment: Post-treat 2-3 um PVDF-HFP coating with pure free RTIL to promote diffusion

Result: Selectivity enhanced to bulk values; permeance appears unchanged

<table>
<thead>
<tr>
<th>RTIL Post-Treatment</th>
<th>CO₂ Permeance</th>
<th>N₂ Permeance</th>
<th>CO₂/N₂ Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>16</td>
<td>16</td>
<td>1.0</td>
</tr>
<tr>
<td>50 C, 20 min</td>
<td>16</td>
<td>0.5</td>
<td>33</td>
</tr>
<tr>
<td>80 C, 5 min</td>
<td>22</td>
<td>0.7</td>
<td>30</td>
</tr>
</tbody>
</table>

• Experiment: Apply secondary polymer/RTIL coating containing 75-80% free RTIL (Thickness ~200-300nm)

Result: Selectivity enhanced; permeance slightly reduced

<table>
<thead>
<tr>
<th>Sample</th>
<th>Post-Treatment</th>
<th>CO₂ Permeance</th>
<th>N₂ Permeance</th>
<th>CO₂/N₂ Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF-HFP Comp.</td>
<td>None</td>
<td>93</td>
<td>30</td>
<td>3.1</td>
</tr>
<tr>
<td>(240 nm)</td>
<td>+ 2ⁿᵈ Coating, 5 min at 50 C</td>
<td>32</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>+ 2ⁿᵈ Coating, 20 min at 50 C</td>
<td>64</td>
<td>6.5</td>
<td>9.8</td>
</tr>
<tr>
<td>PolyRTIL Comp.</td>
<td>None</td>
<td>290</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>(270 nm)</td>
<td>+ 2ⁿᵈ Coating, 5 min at 50 C</td>
<td>230</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>+ 2ⁿᵈ Coating, 20 min at 50 C</td>
<td>240</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>
Summary

- Two classes of RTIL-based gel materials with bulk gas transport properties that meet the CO$_2$/N$_2$ permeability and selectivity targets were developed.
- Several examples of these two classes of RTIL-based gel materials were successfully cast at a thickness of 100 nm.
- A discrepancy between the bulk and composite membrane gas transport properties was observed.
- Several approaches to address this processing challenge have been developed and are being explored in earnest.
- Thorough analysis of the thin-film membranes produced to date is in progress.
- Preliminary modeling results technological and economic benefits over state-of-the-art CO$_2$ capture technology
- This work generated 7 published papers + 2 papers just accepted + 2 papers in preparation and 2 patent applications.
Path Forward

➢ To Project Completion
 ▪ Develop a quantitative understanding of how the deposited material is distributed in the composite membrane both within the support and through the selective layer thickness.
 ▪ Multiple Layer coatings and post-processing to increase the permeability and selectivity of the final membrane.
 ▪ Complete parametric studies to further understand the influences of membrane performance characteristics on process economics.

➢ Transition to Commercialization
 ▪ In order to enhance the potential for industrial interest, we will also evaluate the membranes for CO$_2$/CH$_4$ separation (natural gas treatment) as requested by a petrochemical company. The selectivity target is CO$_2$/CH$_4$ selectivities >20 at low pressure and ambient temperature.
Acknowledgements

- DOE – Advanced Research Project Agency - Energy (ARPA-e)
 - Innovative Materials & Processes for Advanced Carbon Capture Technologies (IMPACCT) Program
- Total S.A.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.