

Economic Feasibility of CO₂ Capture Retrofits for the U.S. Coal Fleet: Impacts of R&D and CO₂ EOR Revenue

Michael Matuszewski

2013 CO₂ Capture Technology Meeting July 11th, 2013

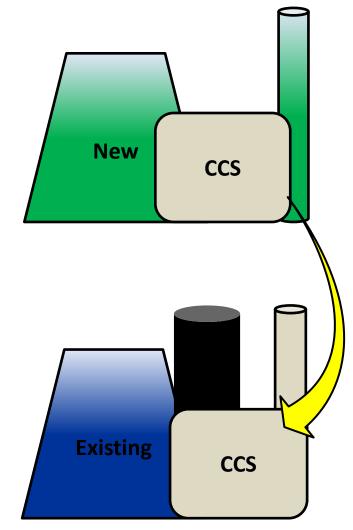
Objectives

In a 2nd Generation CO₂ Capture Market (2030) with No Carbon Regulations, Compare BAU to Retrofit for EOR

- Determine Economic Feasibility of today's Carbon Capture Retrofits in an Enhanced Oil Recovery (EOR) market
 - Capture CO₂ and sell for enhanced oil production
- Determine how 2nd generation capture technologies can improve retrofit economics
 - Cost to capture CO₂ at plant gate
- Assess economic sensitivity to key market variables

 Economic life, dispatch, oil prices

Executive Summary


- Database of design and operational details for existing PC units allows extrapolation of CO₂ retrofit cost and performance
 - ~1,350 units comprising 324 GW of nameplate generation
 - Capital, operating cost and performance extrapolations
 - This analysis evaluates only CO₂ capture no criteria pollutant costs
- 2nd gen capture technology reduces fleet-wide captured costs by ~25%
 - 2030 projected oil prices (\$138/bbl) may further promote capture
 - 2nd gen may increase candidate retrofit GW's *five-fold* over SOA
- EOR revenue promotes more competitive dispatch
 - With EOR revenue, CO₂ capture may *increase* dispatch in power markets
 - Reasonable CO₂ prices (\$10-\$30/tonne) can eliminate marginal cost increases due to capture

2nd Generation Projections

Overview

- By convention, technology evaluations performed on <u>baseline greenfield plant</u>
 - Conceptual, 550MW greenfield installation
 - Includes benefits of A-USC Steam cycle
- 2nd generation CO₂ capture performance projections based on greenfield plant capture technology contributing to target of \$40/tonne captured
- Apply same capture technology to baseline existing plant
 - Retain existing limitations such as fixed steam cycle, current heat rate, etc.
 - Cost of lost power generation
 - Often requires additional equipment & effort
 - Consequently, existing plant cost of captured is generally >\$40/tonne greenfield target (@ constant CF, no EOR)

Extrapolating Results to the Existing Fleet

Existing Plant Database

- Data on 1,355 individual PC units (324 GW)
- Key information:
 - Unit ID, Nameplate Capacity, Heatrate, CO₂ Emissions, Capacity Factor
- CO₂ Generation Allows Calculation of:
 - CO₂ Captured, Capital Costs, Fixed O&M^{*}, Variable O&M^{**}
- Heatrate and Nameplate Capacity Allow Calculation of:
 - Post-Retrofit Output, Lost Power Revenue^{***}
- Capacity Factor Allows Calculation of:
 - Cost of CO₂ Captured, Incremental COE/Marginal Costs

*Proportional to TPC ** Proportional to amount of CO, Captured

Baseline Existing Plant

A <u>baseline existing plant</u> is established for conceptual evaluation of retrofitted CO₂ technologies on a consistent basis

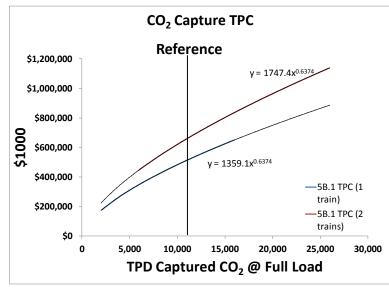
- Allows evaluation of system-wide effects on power plant
- Isolates net power generation penalty due to CO₂ capture retrofit

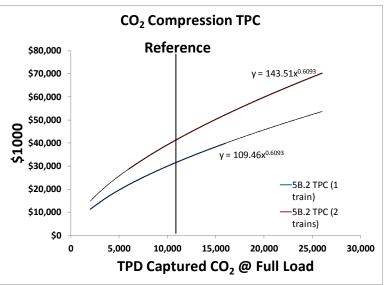
Baseline Existing Plant is equivalent to a subcritical pulverized coal plant without carbon capture, as defined in NETL report "*Cost and Performance Baseline for Fossil Energy Plants*" (Case 9)

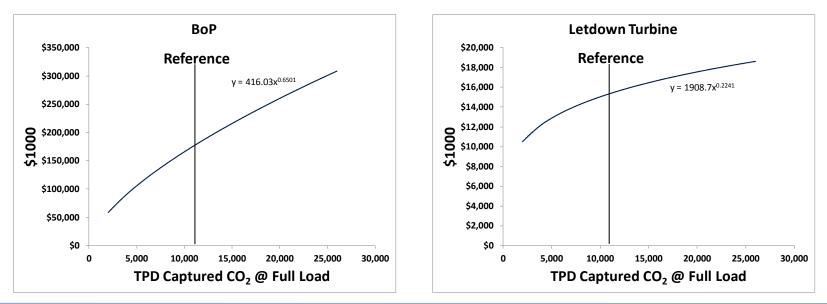
Technology Comparison

• Baseline PC Plant Retrofit (comparison to 2012)

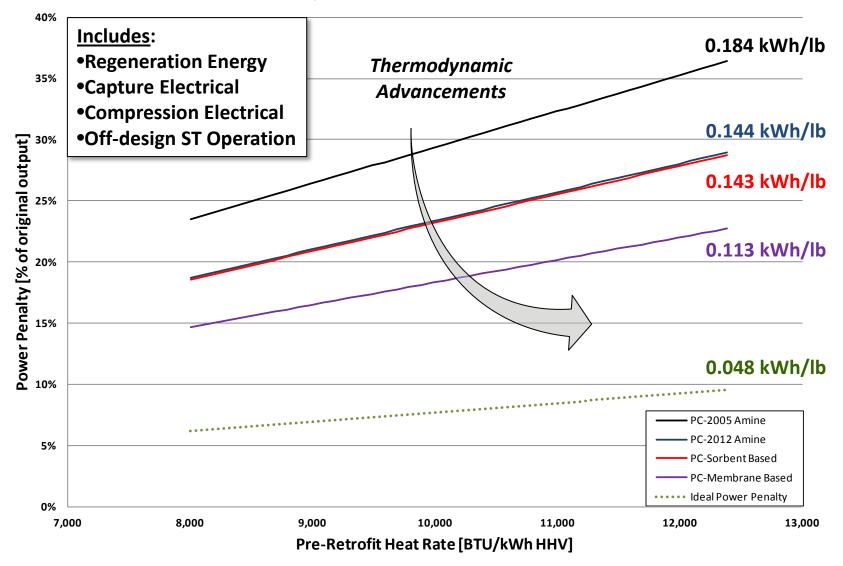
	Technology Vintage		
Metric	2005*	2012*	Example 2nd Gen.
Net Energy Penalty	0.181	0.144	0.143
[kWhnet/lb CO ₂ Captured]	(+26%)		(-1%)
Reference Capital Cost	\$55,400	\$66,400	\$48,000
[\$/tpd CO ₂ Capt. @ full load]	(-17%)		(-28%)
Incremental Fixed O&M	\$1,828	\$1,926	\$1,872
[\$/tpd CO ₂ Capt. @ full load]	(-5%)		(-2.8%)
Incremental Variable O&M	\$2.59	\$5.13	\$4.75
[\$/tpd CO ₂ Capt. @ full load]	(-50%)		(-7%)
CO ₂ Capture Basis [tpd]	11,216	11,216	11,216
		Basis	I


Technology Comparison


• Baseline PC Plant Retrofit (comparison to 2012)


	Technology Vintage		
Metric	2005*	2012*	Example 2nd Gen.
Net Energy Penalty [kWhnet/lb CO ₂ Captured]	0.181 (+26%)	0.144	0.143 (-1%)
Reference Capital Cost [\$/tpd CO ₂ Capt. @ full load]	\$55,400 Notused	Evaluated in this	
Incremental Fixed O&M [\$/tpd CO ₂ Capt. @ full load]	\$1,828 (-5%)	\$1,926 WC	\$1,872 (- 2.8%)
Incremental Variable O&M [\$/tpd CO ₂ Capt. @ full load]	\$2.59 (-50%)	\$5.13	\$4.75 (-7%)
CO ₂ Capture Basis [tpd]	11,216	11,216	11,216
		Basis	

Equipment Cost Scaling (2011 dollars)



Net Derate Projections*

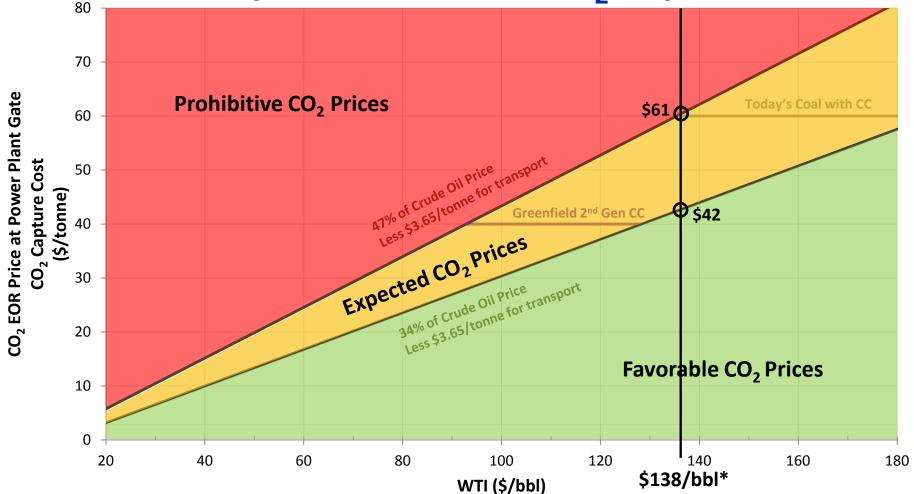
Net Output Penalties of CCS Retrofits

*As evaluated on baseline existing plant. Does not include balance of plant improvements

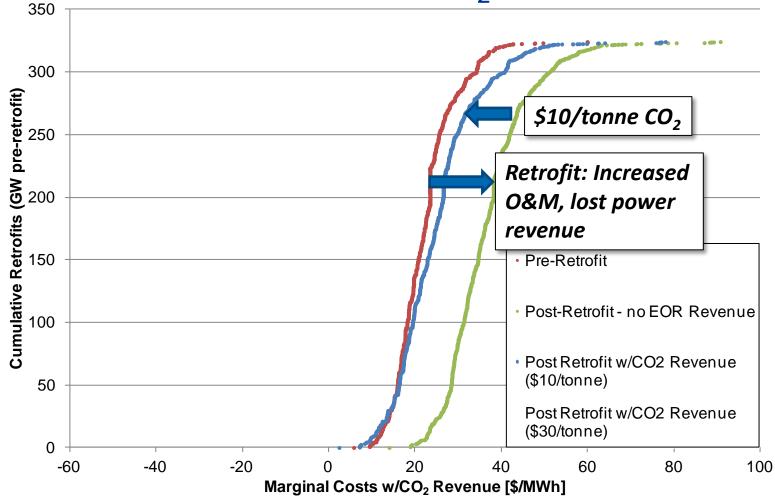
CO₂ Captured Cost Metric

CapturedCost = CCF * TOC + LP * PP * 8760 * CF + FOM + VOM * CF AnnualCO₂Captured • Where: - Captured Cost [=] \$/tonne - TOC = Total Overnight Cost [=] \$ - CCF = Capital Charge Factor [=] yr¹ - LP = Lost Power [=] MW - PP = Market Power Price [=] \$/MWh

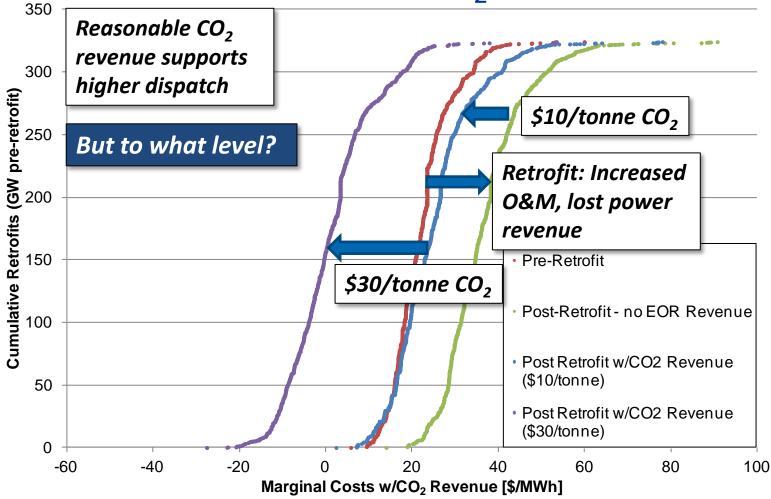
- CF = Capacity Factor [=] (fraction)
- FOM = Fixed O&M [=] \$/yr
- VOM = Variable O&M [=] \$/yr @ 100% load
- Annual CO₂ Captured [=] tonnes/yr


Plant-gate cost to capture CO₂ defined as key metric for retrofit evaluation in EOR market.

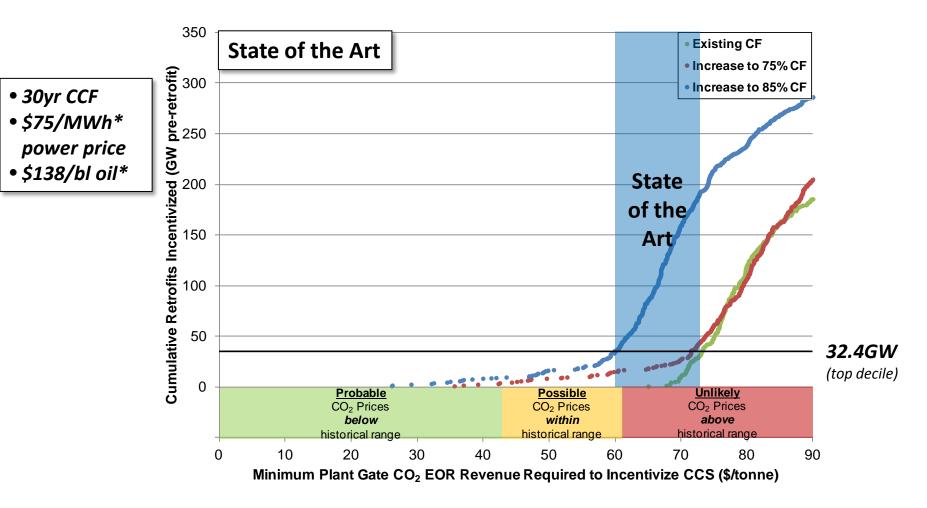
Existing Plant Retrofit Projections 2030 EOR Market with No CO₂ Regulations


2030 Oil Prices May Support EOR CO₂ Prices that are Equal to or Above CO₂ Capture Costs

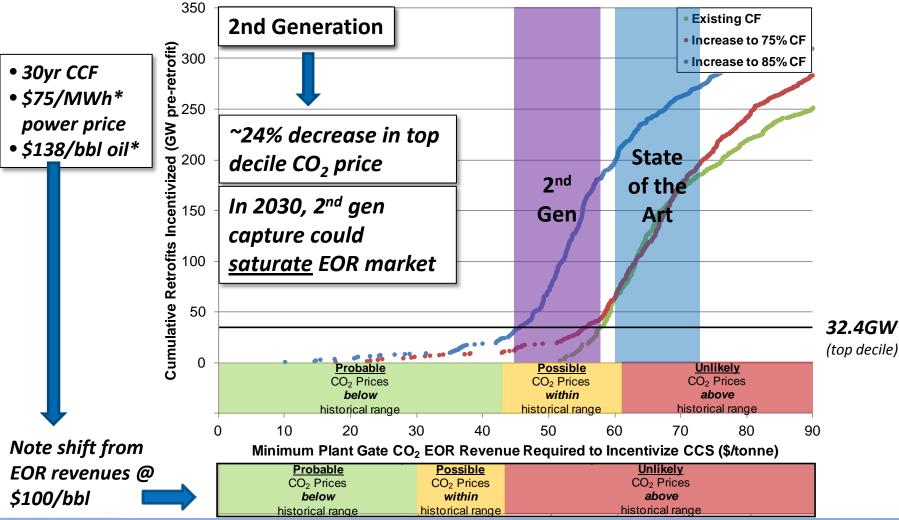
From 2008 to mid-2011, the average annual new contract price for CO₂ (\$/MSCF) at the Denver City, Texas "hub", varied between 1.8% and 2.5% of the average annual WTI Crude oil price (\$/bbl) in the corresponding years. Expressed in \$/tonne, this is 34% to 47% (at standard conditions of 60 °F and 14.7 psia). (The non-averaged contract prices (\$/MSCF) varied between 1.4 and 3.3% of the oil price between 2008 and mid-2011.) Source: Chaparral Energy "US CO2 & CO2 EOR Developments" Panel Discussion at CO₂ Carbon Management Workshop December 06, 2011. Estimated 100 km pipeline transport cost of \$3.65/tonne is subtracted to convert the historical "hub" price to an estimated power plant gate price.


*NEMS Projection

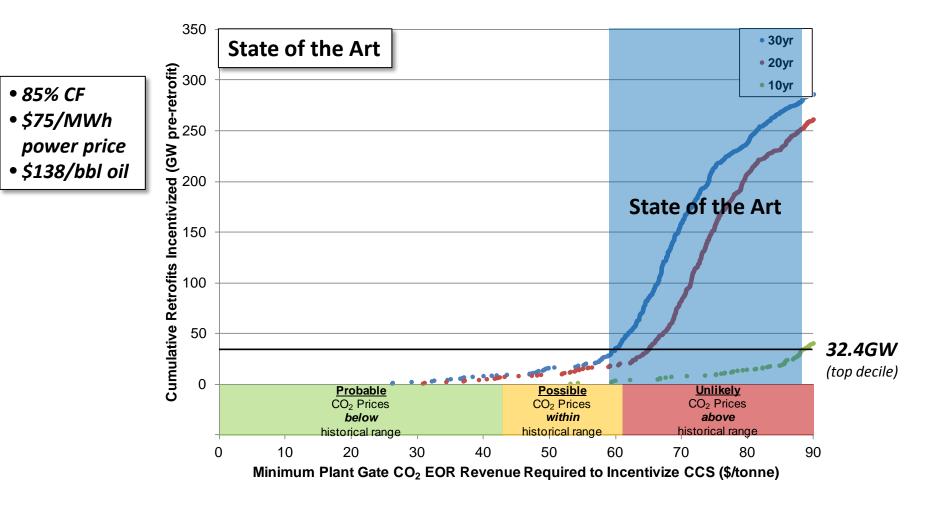
Incremental Marginal Cost Trends Retrofitting SOA CO₂ Capture



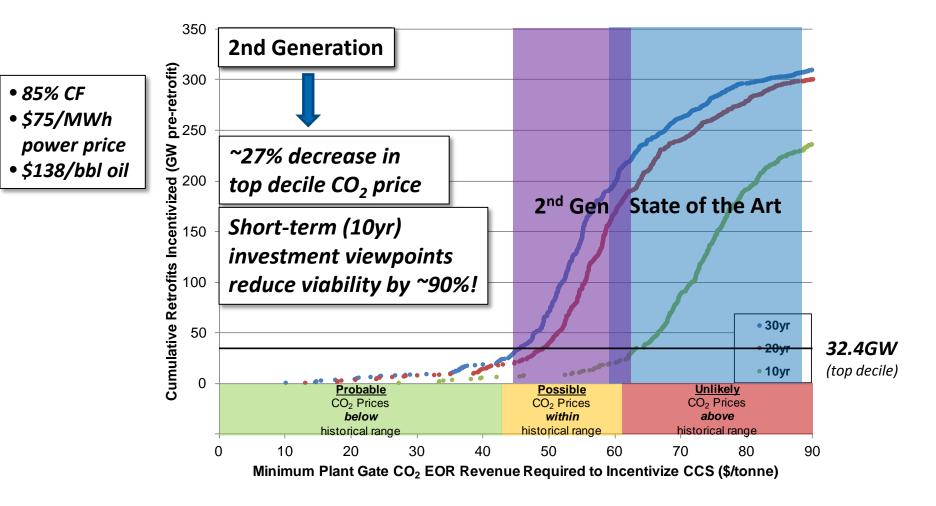
Incremental Marginal Cost Trends Retrofitting SOA CO₂ Capture



Effect of Dispatch - 2030 *Capacity Factor Parameter Sensitivity*


Effect of Dispatch - 2030 Capacity Factor Parameter Sensitivity

*NEMS Projections. Capital costs reflect ~15% premium due to increase in oil prices.



Effect of Capital Recovery Period - 2030 *Capital Charge Factor Parameter Sensitivity*

Effect of Capital Recovery Period - 2030 *Capital Charge Factor Parameter Sensitivity*

Conclusions

Compared cost of CO₂ retrofits to minimum CO₂ price in EOR market

Bounding scenario: Calculations indicate <u>best case</u> for BAU vs. retrofit

- In 2030, SOA technology promotes 0-45GW of economic retrofits*
- 2nd gen improvements increase potential up to five-fold (25-215GW)*
 - CO₂ contract price relationship to price of WTI crude
- EOR market while limited in size, is an excellent transition step for proving out carbon capture and reducing risk for future installations
- Still need help for "slam dunk" EOR scenario
 - Need CO₂ capture R&D success!
 - Dispatch is essential and likely achievable
 - Regulatory drivers encouraging CO₂ capture should also support a longterm (30yr) investment viewpoint
- EOR revenue will offset lost power revenue, reducing marginal costs
 - \$10/tonne nearly offsets marginal cost increases for entire fleet
 - \$30/tonne *eliminates* marginal costs (≤\$0/MWh) for ~150GW

Acknowledgements

• NETL

- John Wimer Project Guidance
- Kristin Gerdes Sensitivity Analyses
- Robert Stevens 2nd Gen Technology Projections

• Booz Allen Hamilton

Vince Chou – Cost and Performance Extrapolation

• Leonardo Technologies Inc.

- Massood Ramezan Project Guidance
- Connie Zaremsky Database Management
- Eric Lopert Data Generation

Questions?

