Slipstream pilot plant demonstration of an amine-based post-combustion capture technology for CO$_2$ capture from coal-fired power plant flue gas

DOE funding award DE-FE0007453

2013 NETL CO$_2$ Capture Technology Meeting
Krish R. Krishnamurthy, Linde LLC
July 8-11, 2013
Pittsburgh, PA
The Linde Group Overview and Carbon Capture Expertise

Linde pursues technology development and solution offer in all three CC pathways

Post-combustion capture
- Linde expertise
  - Scrubbing system
  - CO₂ processing (drying, compression and purification)
  - CO₂ suitable for storage

Pre-combustion capture
- Linde expertise
  - Air separation unit
  - Shift
  - CO₂ recovery
  - CO₂ to storage

Oxyfuel combustion
- Linde expertise
  - Air separation unit
  - CO₂ condensation
  - CO₂ liquefaction
  - CO₂ to storage

Leveraging Synergies

- Founded: 1879
- Sales (2012): $20 billion (€15.3b)
- Employees: 61,965
- Countries: >100
- US Linde Gas HQ: Murray Hill, NJ
- US Linde Engineering Facilities: Blue Bell, PA; Tulsa, OK & Holly Springs, GA
### Project Budget: DOE funding and cost share

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funding</td>
<td>$2,670,773</td>
<td>$9,367,628</td>
<td>$2,754,564</td>
<td>$14,792,365</td>
</tr>
<tr>
<td>Cost Share</td>
<td>$667,943</td>
<td>$2,341,907</td>
<td>$688,641</td>
<td>$3,698,091</td>
</tr>
<tr>
<td>Total Project</td>
<td>$3,337,716</td>
<td>$11,709,535</td>
<td>$3,443,205</td>
<td>$18,490,456</td>
</tr>
</tbody>
</table>

**Cost share commitments:**

- Linde: $3,107,352
- BASF: $493,360
- EPRI: $97,379

Project spend until end of Budget Period 1: $3,240,192
### Project Participants

<table>
<thead>
<tr>
<th>Partner/Organization</th>
<th>Lead contact(s)</th>
<th>Key Role(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE-NETL</td>
<td>Andrew P. Jones, Project Manager</td>
<td>-Funding &amp; Sponsorship</td>
</tr>
<tr>
<td>Linde LLC</td>
<td>Krish Krishnamurthy, PI Stevan Jovanovic, Technical Lead</td>
<td>-Prime contract -Overall program management -Operations and testing</td>
</tr>
<tr>
<td>BASF</td>
<td>Sean Rigby (BASF Corp)</td>
<td>-OASE® blue technology owner -Basic design -Solvent supply and analysis</td>
</tr>
<tr>
<td>EPRI</td>
<td>Richard Rhudy</td>
<td>-Techno-economics review -Independent validation of test analysis and results</td>
</tr>
<tr>
<td>Southern Co./NCCC</td>
<td>Frank Morton Michael England</td>
<td>-NCCC Host site (Wilsonville, AL) -Infrastructure and utilities for pilot plant build and operations</td>
</tr>
<tr>
<td>Linde Engineering, Dresden</td>
<td>Torsten Stoffregen Harald Kober</td>
<td>-Basic engineering -Support for commissioning -Operations and testing</td>
</tr>
<tr>
<td>SFPC (Linde Engineering North America)</td>
<td>Lazar Kogan Keith Christian</td>
<td>-Detailed engineering -Procurement and installation</td>
</tr>
</tbody>
</table>
Overall Objective

— Demonstrate Linde-BASF post combustion capture technology by incorporating BASF’s amine-based solvent process in a 1 MWel slipstream pilot plant and achieving at least 90% capture from a coal-derived flue gas while demonstrating significant progress toward achievement of DOE target of less than 35% increase in levelized cost of electricity (LCOE)

Specific Objectives

— Complete a techno-economic assessment of a 550 MWel power plant incorporating the Linde-BASF post-combustion CO₂ capture technology to illustrate the benefits
— Design, build and operate the 1MWel pilot plant at a coal-fired power plant host site providing the flue gas as a slipstream
— Implement parametric tests to demonstrate the achievement of target performance using data analysis
— Implement long duration tests to demonstrate solvent stability and obtain critical data for scale-up and commercial application
Project Overview: Key Drivers

— Post-combustion CO₂ capture technology is flexible and can be applied to both new and existing power plants

— Solvent based technologies are today the leading option as they have been commercially applied at large scale in other applications (e.g. natural gas processing, syngas purification)

— Advanced amine based technologies with properly selected solvent can overcome performance and stability issues with the current state-of-the-art reference MEA solvent

— The specific advanced amine based solvent (BASF OASE® blue) offers key performance benefits (increased CO₂ loading, reduced regeneration steam requirements, stable in the presence of oxygen and significant potential for lower capital costs)
BASF OASE® blue Technology Development
Designed for PCC Applications

Equilibrium Kinetics Stability

Fundamental Lab Scale R&D: Advanced Solvents Screening, Development, Optimization

BASF Miniplant, Ludwigshafen, Germany: Solvent Performance Verification

0.45 MWe PCC Pilot, Niederaussem, Germany: Preliminary Process Optimization
Niederaussem Pilot Plant: Main results of Phase I

- **OASE blue** has a 20% lower specific energy consumption
- **OASE blue** has a significant lower solvent circulation rate
- Even after six months of operation, the oxidation rate of OASE blue was extremely low.
Niederaussem Pilot Phase II: Long term testing evaluating materials, solvent degradation and emissions reduction

Status: Phase II (10/2012)
- > 20 000 hours operation
- > 4 800 t CO₂ captured
- availability: 97%
Linde-BASF advanced PCC plant design*  

Advanced emission control system

High capacity structured packing

Optimized Blower Concept

Gravity Flow Interstage Cooler

Treated flue gas to stack

Flue gas blower

Make-up water

Water Cooler

Absorber

Interstage Cooler

Solvent Filter

Solvent Cooler

Water Wash

Desorber

Rich/Learn Solvent Hex

Reboiler

Condensate

LP_Pipe Steam

Condensate return

Optimized Energy Consumption


*Patent Applications 2010-2012
Comparative PCC Performance Results
Linde-BASF vs Reference DOE-NETL Case*

*Reference Case # 10 of DOE-NETL 2007/1281 Report
Power plant efficiency improvements and LCOE reductions with Linde-BASF PCC technology

Incremental improvements in power plant efficiency from MEA based PCC to LINDE-BASF LB-2 Option

Net HHV Efficiency
- NETL - MEA: 24.9%
- Advanced Solvent: 1.76%
- PCC Optimization (LB-1): 1.39%
- Heat and Power Integration (LB-2): 29.4%


Incremental Reductions in Levelized Cost Of Electricity from MEA based PCC to LINDE-BASF LB-2 Option

LCOE (2007$/MWh)
- NETL - MEA: $119.6
- Advanced Solvent: $114.1
- Process Enhancements: $109.0
- PCC Optimization (LB-1): $103.5
- Heat and Power Integration (LB-2): $101.2
- LINDE-BASF: $101.2

Linde-BASF PCC Plant Design for 550 MWe PC Power Plant

- Single train PCC design for ~13,000 TPD CO₂ capture
- 40-50% reduced plot area to 180m x 120 m
Linde-BASF experience in large scale carbon capture

CO₂ capture in natural gas processing: Re-injection Project - Hammerfest

World’s first industrial project to deliver CO₂ separated onshore from the well-stream back offshore for re-injection into a reservoir

— Partnership with StatoilHydro Petroleum
— Melkoya island near the town of Hammerfest, Norway
— CO₂ sequestration and re-injection integral part of the Hammerfest LNG project. Linde performed design, EPC and commissioning
— One dedicated well for CO₂ storage in a sandstone formation sealed by shale cap.
— Re-injection started in April 2008
— BASF’s OASE® purple process used in CO₂ capture

700,000 tpa CO₂ capture and re-injection (part of world scale LNG project, Snøhvit, Norway)
# Project Schedule and Milestones: Budget Period 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Details</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Project management and planning</td>
<td>A. Submit project management plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2. Conduct kick-off meeting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. Host site agreement executed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. Techno-economic evaluation on a 550 MWe power plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. 2.1 Basic scope for power plant with CO2 capture and compression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6. 2.2 Detailed design of the power plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7. 2.3 Economic analysis of the power plant with CO2 capture and compression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8. 2.4 Complete initial techno-economics analysis on a 550 MWe power plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9. 3. Pilot plant design optimization &amp; basic design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10. 3.1 Solvent selection and basic process design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11. 3.2 Parametric design optimization and confirmation of design basis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12. 3.3 Basic design package of the pilot plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13. 4. Complete basic design and engineering of the 1 MWe pilot plant to be tested at the NCCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14. 5. Pilot plant system design and engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15. 5.1 Preliminary engineering studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16. 5.2 Process design review and HazOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17. 5.3 Detailed design and engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18. 5.4 Development of equipment packages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19. 5.5 Site design, engineering and foundations specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20. 6. Pilot plant cost and safety analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21. 6.1 Preliminary pilot plant EHS assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22. 6.2 Transportation and lifting study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23. 6.3 Cost optimization and updated pilot plant cost build up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24. 6.4 Complete pilot plant engineering and cost analysis for the 1 MWe unit to be tested at NCCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25. G - Go decision to build pilot plant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Budget Period 1 tasks successfully completed on time and on schedule**
Project Schedule and Milestones: Budget Period 2

Budget Period 2 tasks initiated in March 2013 and are currently in progress
<table>
<thead>
<tr>
<th>Jan-12</th>
<th>Feb-12</th>
<th>Mar-12</th>
<th>Apr-12</th>
<th>May-12</th>
<th>Jun-12</th>
<th>Jul-12</th>
<th>Aug-12</th>
<th>Sep-12</th>
<th>Oct-12</th>
<th>Nov-12</th>
<th>Dec-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
|  - Design review  
|  - PSR 1 and 2  
|  - Hazop  
|  - 60% model review  
|  - Equipment packages  
|  - 3-D model  
|  - 30% model review  
|  - Update P&ID (Hazop actions)  
|  - Module package  
|  - RFQ to vendors  

PSR: Process Safety review; P&ID: Process and Instrumentation Diagrams; RFQ: Request for quotes; Hazop: Hazard and operability study
Task 3: Design Selection
Pilot Plant Layout

Optimized plant layout investigated
3D Model of NCCC site with Linde-BASF Pilot Plant
3D Model of Linde-BASF 1 MWe Pilot Plant

Absorber

Stripper

Structural support for windload protection
3D Model of Linde-BASF Pilot Plant modular design (3 level structure)
### Project progress: Key Project Milestones (Budget Period 1)

#### Status


- Submit project management plan (03/09/2012) ✓
- Conduct kick-off meeting with DOE-NETL (11/15/2011) ✓
- Complete initial techno-economic analysis on a 550 MWel power plant (05/04/2012) ✓
- Complete basic design and engineering of a 1 MWe pilot plant to be tested at NCCC (06/20/2012) ✓
- Execute host site agreement - completed 01/09/2013 ✓
- Complete initial EH&S assessment - Completed 12/14/2012 ✓
- Complete detailed pilot plant engineering and cost analysis for the 1 MWe pilot plant to be tested at NCCC – Completed by 02/15/2013 ✓

---

Project continuation request to proceed to Budget Period 2 was presented to DOE-NETL on Jan 14, 2013 and was accepted.
Key design and engineering features and decisions

- Joint design basis development (Linde/BASF and SCS/NCCC) for the nominal 1 MWe pilot plant
- Leveraged Niederaussem pilot plant experience for early design selection decision on target solvent, pilot plant preliminary sizing, process control and analytical sampling and measurement
- Pilot plant maximum testing capability to 30 TPD CO2 or 1.5 MWe equivalent – confirmed utility availability with some upside margins
- Integrated modeling approach for detailed engineering – start with the existing NCCC facility model with tie-in points defined and integrated into pilot plant model to avoid conflicts in build phase
- Equipment and module packages sent to multiple vendors and vendor selection performed based on cost, capability and eagerness for involvement in project
- Concrete column sections evaluated but determined to impact project timeline significantly – currently allowing for future swapping the SS bottom section of absorber with concrete section.
- Current pilot plant equipment procurement and build schedule (BP2) requires BP2 timeframe extension by 3-months. No cost time extension agreed with DOE-NETL.
<table>
<thead>
<tr>
<th>Decision Point</th>
<th>Basis for Decision/Success Criteria</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion of Budget Period 1</td>
<td>Successful completion of all work proposed in Budget Period 1</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Demonstrate a 10% reduction in capital costs with Linde-BASF CO2 capture process</td>
<td>30.5 to 34.7% for PCC and 16.6 to 17.3% for integrated power plant</td>
</tr>
<tr>
<td></td>
<td>Demonstrate a LCOE increase of less than 65% over the baseline</td>
<td>62.2% and 58.8% for 2 options considered</td>
</tr>
<tr>
<td></td>
<td>Submission of an Executed Host Site Agreement</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Submission of a Topical Report – Initial Techno-Economic Analysis</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Submission of a Topical Report – Initial EH&amp;S Assessment</td>
<td>Submitted</td>
</tr>
<tr>
<td></td>
<td>Submission of a Topical Report – Detailed Pilot Plant Engineering and Cost Analysis</td>
<td>Submitted</td>
</tr>
<tr>
<td></td>
<td>Submission and approval of a Continuation Application in accordance with the terms and conditions of the award</td>
<td>Submitted &amp; approved by DOE-NETL</td>
</tr>
</tbody>
</table>
### Progress on procurement of pilot plant equipment, modules and site installation contract (Linde Engineering – North America, formerly SFPC)

<table>
<thead>
<tr>
<th>Item</th>
<th>Progress/Accomplishments to date</th>
<th>Key activity planned for completion</th>
</tr>
</thead>
</table>
| Heat Exchangers                                | - Production & testing/inspection completed  
- Shipped to module fabricator                                                               | - Installation on modules                                                                          |
| Pumps                                          | - Production & perf. testing completed  
- Performance testing & acceptance                                                              | - Installation on modules                                                                          |
| Columns and pressure vessels                   | - Absorber & stripper final drawing complete and approved for production  
- Other pressure vessels produced                                                               | - Produce, inspect and ship to site (Jan 2014)  
- Ship vessels to module fab.                                                                    |
| Column internals                               | - Order placed. Final drawings complete & approved for production                               | - Produce & ship for assembly in column                                                            |
| Modules                                        | - Order finalized with design updates  
- Structural steel assembly in progress                                                          | - Finish module assembly  
- Ship to site (Dec 2013)                                                                        |
| Site installation contract                     | - Contractor finalized and terms agreed                                                           | - Construction team mobilization at site (Oct. 2013)                                              |
| Instruments, control valves, analyzers and other| - Order placed for all items  
- Several items shipped to module fab.                                                           | - Install on modules  
- Selected items direct to site                                                                   |
 Specification and Purchase of Process Equipment for the Pilot Plant

Plate frame Heat Exchangers

**Heat Exchangers**
- Order placed for all HX
- Produced by vendor
- Tested & inspected at vendor site
- Shipped to module fabricator

Process Pumps

**Process and Cooling Water Pumps**
- Order placed for all pumps
- Produced by vendor
- Tested & inspected at vendor site
- Shipped to module fabricator
Accomplishments to date (Module):
1. Detailed specifications and 3-D models of the module packages completed.
2. Purchase orders completed and vendor packages received and reviewed.
3. Modules are currently in fabrication.

Planned work by module fabricator:
1. Complete structural assembly.
2. Install equipment and piping, instruments, electrical etc.
3. Test fit and inspection.
Accomplishments to date (SCS at NCCC site):
1. Civil design engineering completed.
3. FRP flue gas header designed & installed.
4. Sump pump, flue gas blower, pre-scrubber packing and internals purchased.

Planned work by SCS (July 2013 to Feb 2014):
1. Install epoxy coating on slab and sump pumps.
2. Install blower and pre-scrubber internals and test performance.
3. Install solvent system modifications.
4. Install new impeller for demin water pump.
Key Project Milestones (Budget Periods 2 and 3)


- Complete purchase orders and fabrication contracts for the 1 MWe pilot plant (06/30/2013)
- Complete shop fabrication of equipment and modules and associated engineering checks (12/15/2013)
- Complete site preparation and foundation installations at NCCC to receive pilot plant (11/15/2013)
- Complete installation of the 1 MWe pilot plant at NCCC (02/28/2014)
- Mechanical completion of 1 MWe pilot plant at NCCC (05/28/2014)

**Budget Period 3 (Jun. 1, 2014 – Feb. 28, 2016)**

- Complete pilot plant start up and demonstrate plant operation at steady state (08/31/2014)
- Develop pilot-scale parametric test plan (09/30/2014)
- Complete 1 MWe pilot-scale parametric tests (02/28/2015)
- Develop pilot-scale long duration test plan (03/31/2015)
- Complete 1 MWe pilot-scale long duration tests (11/30/2015)
- Complete updated techno-economic analysis (01/31/2016)
- Complete updated EH&S assessment (02/28/2016)
Acknowledgement and Disclaimer

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0007453.

Disclaimer: “This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Thank you for your attention!

Project DE-FE0007453
2013 NETL CO$_2$ Capture Technology Meeting
Krish R. Krishnamurthy, Linde LLC
July 8-11, 2013
Pittsburgh, PA