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Overall Project Objectives 
 design, develop and demonstrate a bench-scale process 

for the efficient and cost effective separation of CO2 from 
flue gas using Pressure Swing Adsorption (PSA) 

 goal to reduce energy consumption, capital costs, and 
environmental burdens with novel PSA cycle/flow sheet 
designs 

 applicable to both large (500-1000 MW) and small (5-50 
MW) capacity power plants, and industries with 10 to 100 
times less CO2 production 

Process simulations and experiments; structured 
adsorbent material  development, CFDs and 

experiments; and complete flow sheet analyses being 
used for demonstrating and validating the concepts. 
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PSA Technology Advantages 
 established, very large scale technology for other 

applications 
 needs no steam or water; only electricity 
 tolerant to trace contaminants; possibly with use 

of guard or layered beds 
 zeolite adsorbent commercial and widely 

available 
 increase in COE lower than other capture 

technologies 
 beds can be installed under a parking lot 



PSA Technology Challenges 
 energy intensive, but better than today’s amines; 

possibly overcome by novel designs 
 today, very large beds required  implies large 

pressure drop  more power; possibly overcome 
by structured adsorbents and faster cycling 

 large footprint; possibly overcome by 
underground installation and faster cycling  
smaller beds 

 high capitol cost; possibly overcome by faster 
cycling  smaller beds 



Key PSA Technology Project Challenge 
 although a commercial tri-sieve zeolite could be 

used today in an efficient PSA cycle, it would 
only minimize to some extent the pressure drop 
issues, but not the adsorbent attrition and mass 
transfer issues 

 key challenge is to develop a structured adsorbent 
around an efficient PSA cycle that exhibits a high 
enough packing density to allow the fastest 
possible cycling rate ( smallest possible beds), 
while improving pressure drop and mass transfer 
issues and eliminating attrition issues 



Where are we going? 



• increase working capacity 10 fold (herculean) 
• operate at 1/10th cycle time (achievable) 
• known as rapid PSA 

 

Scale of  PSA System for CO2 Capture from 
500 MW Power Plant 

Is it possible to achieve a 1/10th volume reduction? 

although rapid PSA offers potential for a low-cost 
solution for CO2 capture, the extent of size 

reduction achievable is, at the moment, unknown 



QuestAir H-6200 Rapid PSA-Installed at ExxonMobil Facility 

H2 Production Rapid PSA 
~ 12,000 Nm3/h/module 

H2 Production 
Conventional PSA 
~ 20,000 Nm3/h 

Two of Questair’s modules do 20% 
better than this 6-bed PSA system 

and are much smaller. 

A 500 MW plant 
produces  ~ 33,000 
Nm3/h at > 30 times 

lower pressure! 



Where are we now after 
completing first year? 



Preliminary Technical and Economic 
Feasibility Study 

Overall Outcome 



Significant Outcomes from Year 1 
 developed PSA cycle and process flow sheet with less than 35% 

LCOE increase; based on completed preliminary technical and 
economic feasibility study 
 

 demonstrated zeolite crystals can be coated onto basic metal 
structure with at least 50 mm thick coating; suggests it may be 
possible to achieve even 100 to 150 mm coatings, if needed 
 

 demonstrated Catacel core structures can be made with up to 400 
cells per square inch (cpsi); makes goal of achieving 600 cpsi, 
possibly even 800 cpsi, within reach 
 

 demonstrated needed limit of < 20 kPa/m pressure drop through 
400 cpsi core at very high velocities up to 25 m/s; pressure drop 
limit utilized in preliminary technical and economic feasibility 
study 



Significant Outcomes from Year 1 
 Predicted pressure drop through Catacel core nearly 

quantitatively using CFD model with no adjustable parameters; 
paves way to fabricate even more optimum core structures 
using computational tools 
 

 Demonstrated, via PSA process simulation, possibly lowest 
energy, highest feed throughput PSA cycle for CO2 capture; 
amazing when considering bulk density reduced from 710 
kg/m3 (typical for packed bed of zeolite beads) to 400 kg/m3 
(entirely feasible with Catacel core) 
 

 PSA cycle boasts feed throughput of around 3,000 
L(STP)/hr/kg and separations energy < 18 kJ/mol CO2 captured 



How did we get to this point? 



CO2 Isotherm on Adsorbent and Dual Process Langmuir Fit 
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N2 Isotherm on Adsorbent and Dual Process Langmuir Fit 
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O2 Isotherm on Adsorbent and Dual Process Langmuir Fit 
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Zeolite Coated Metal Foil 
 preliminary fabrication 
 coated on flat foil coupon at 30 mg/in2 

 coating passed Catacel adhesion test 
 goal: to make coating 100 – 150 µm thick 

 
 

50 µm 

50 µm 

20 µm 
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Rapid Adsorbent Characterization 
 

 commercial zeolites 
– activation at 350 oC 

overnight in N2 
– cycling at 90 oC 

• 2 min adsorption 
in 15%  CO2-N2 

• 2 min desorption 
in 100% N2 

– PT = 1 atm 
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TGA Runs at 70 oC 
Cycle: 100 s Stream with CO2 /100 s Pure N2 
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Working Capacities  of washcoat between 50 and 100% higher than 
commercial beads! 



Corrugated Catacel Cores 
1” x 6” x 400 cells/in2  

goal: to increase corrugation to 800 cpsi 
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Structured and Beaded Media Pressure Drop  

Pressure Drop Apparatus 
Qmax = 1000 SLPM 

∆Pmax = 30, 70 or 140 in H20 
 

goal: ∆Pmax < 20 kPa/m at 
design velocity of 20 m/s 

 



Volumetric Frequency Response Apparatus 

5x10-5 to 10 Hz 
100 g adsorbent 

80 oC and 0.2 atm 
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Mass Transfer Models 
Macropore Diffusion 
Macropore Convection 
Micropore Diffusion 

System and Conditions 
CO2-commercial zeolite beads 
T = 25 oC 
P = 102, 185, or 744 torr 
f = 5x10-5 to 10 Hz 

Correlation of Mass Transfer 
Models with Experimental Data 

only macropore diffusion model 
unequivocally fits the data over the 

pressure range investigated 



1-Bed Rapid PSA Apparatus  
0.1 to 2 Hz 

100 g adsorbent 
80 oC and 0.1 atm 
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Two-Step CO2 and N2 Cycling Experiments 

PH           
↑  
PL  

PH           
↓  
PL  

Pure CO2 or N2 Effluent 

Counter-Current Blowdown Pressurization 

Pure CO2 or N2 Feed 

Information Obtained 
a) Determination of Valve Cv 

b)  Determination of excluded volume 

c) Validation of Single Component Isotherms     

d) Validation Adsorption/Desorption Mass Transfer Coefficients    



Pure Gas Cycling in 1-Bed Rapid PSA System 
CO2 on Beaded Zeolite at 22 oC 
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Pure Gas Cycling in 1-Bed Rapid PSA System 
CO2 on Beaded Zeolite at 22 oC 



kLDF = 1.87  s-1 

P
(Torr)

hA
(kJ/K/s)

Dp/Rp
2

(s-1)
kLDF

(s-1)

744 1.7e-4 3.32 1.94

185 1.7e-4 3.32 0.38

102 1.7e-4 3.32 0.18

Comparison of Mass Transfer Coefficients 
CO2 on Beaded Zeolite 

Volumetric Frequency Response Apparatus (25 oC) 
 

1-Bed Rapid PSA System (22 oC) 



Snapshot of Multi-Bed PSA System 

Typical Cycle Steps for PSA Operation 

PH 

T 

PH 
PH           
↓  

PI1  

PI2           
↓  

PL  

PL 
PL           
↓  

PI1  

PI1           
↓  

PH  

T CO2 Feed Gas 
CO2 Rich 
Product 

CO2 Depleted Product 

Feed Heavy 
Reflux 

Equalization Counter- 
Current 

Depressurization 

Light 
Reflux 

Equalization Light 
Product 

Pressurization 

α 
β 

Co-Current 
Depressurization 

PH           
↓  

PI2  

γ 

0 > α, β, γ > 1 

b 

c d 
e 

0 > a, b, c, d, e > 1 

PI1           
↓  

PH  

Feed 
Gas 

Pressurization 

a 



PSA Process Conditions for DAPS* 
Process Conditions 
PH = 120 kPa 
PL = 5 kPa 
TF = 75 C 
h = 0.0 W/m2 K (adiabatic) 
tc = 120 s 
θ =  2,600 – 3,100 L(STP)/kg/hr 
 Structured Bed Properties 
Lb = 0.125 m 
db = 0.09848 m 
ρb = 400 kg/m3 

εb = 0.64 

Feed Composition (Dry) 
yCO2 = 0.1592 
yN2   = 0.8029 
yO2   = 0.0379 
 
 
 
 

 

Mass Transfer Coefficients 
kCO2 = 10.0 s-1 

kN2   = 1.0 s-1 
kO2   = 1.0 s-1 
 
 
 
 * DAPS: dynamic adsorption process simulator 



DAPS Results of Bench Scale PSA Process 
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Motivation to Compare Solid Amine to Zeolite 
 sorbents for post-combustion CO2 capture 
 zeolites 
 have sufficient working capacity for CO2 

 not H2O tolerant: must be removed prior to PSA unit! 
 solid amine sorbents 
 commercial amines grafted or immobilized within 

large pores of a high surface area support like silica 
gel 

 have sufficient working capacity for CO2 
 H2O tolerant: will it pass through the PSA unit with 

N2? 
 

 
 

solid amine sorbents have NOT been studied 
extensively for CO2 capture from flue gas by PSA 



CARiACT G10 Solid Amine Sorbent* 
 substrate: CARiACT G10 silicon 

dioxide (Fuji Silysia) 
 surface area: 300 m2/g 
 pore volume: 1.3 ml/g 
 particle size: 75-150 µm 

 polyethylenimine (PEI) (MN 423 
Aldrich) 

 40 wt% PEI physically adsorbed 
(immobilized) onto G10 

*Gray et al., Energy Fuels, 23 (2009) 4840. 



Snapshot of Multi-Bed PSA System 

Typical Cycle Steps for PSA Operation 
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Comparison of PSA Process Performance 
PEI vs Zeolite 

for the same process performance and conditions (much different PSA 
cycle), zeolite beds are 10X smaller than PEI beds with PEI consuming 2X 

the energy => need amine with faster desorption kinetics 

PEI Zeolite
tcyc (s) 300 120

Feed Throughput 
(L(STP)/kg/hr) 224 2870

CO2 Recovery (%) 91.0 91.8
CO2 Purity (%) 95.2 95.8

Energy (kJ/mol CO2 

Recovered) 34.2 17.6



Conclusions 
 metal foil coated with commercial zeolite and corresponding 

low pressure drop corrugated structure showing much promise 
for CO2 capture from flue gas 

 frequency response and 1-bed rapid cycling experiments both 
show very fast mass transfer rates of CO2 in beaded zeolite 

 very low energy, very high feed throughput PSA cycle 
configuration developed using validated DAPS 

 novel hybrid adsorption process flow sheet resulted in < 35% 
COE increase  

 shorter PSA cycle times showing potential to significantly 
reduce column size and thus plant footprint 

 PEI solid amine sorbent showing potential in PSA process; it 
may allow H2O to pass through bed with N2; need better 
kinetics to make PSA process performance more like zeolites 
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