Composite Hollow Fiber Membranes for Post Combustion CO₂ Capture

DOE Award: DE-FE0007514

2013 NETL CO₂ Capture Technology Meeting

Project Team

GE Global Research

- Teresa Grocela-Rocha
- Joe Suriano
- Paul Glaser
- David Moore
- Hongyi Zhou

Chris Orme

Ali Rownaghi

Tom Barton

- Pat McCloskey
- Surinder Singh
- Kristi Narang
- Balajee Ananthasayanam
 - Idaho National Laboratory
 - John Klaehn
 - Georgia
 Institute of
 Tech
 Tech
- William Koros (PL)

Jerrod Doss Isaak

- Lauraine Denault
- Jeff Manke
- Paul Wilson
- Paul Howson
- Dhaval Bhandari (PI)

Fred Stewart (PL)

Vijay Sethi (PL)

Acknowledgment

"The material described in the presentation is based upon work supported by the Department of Energy National energy Technology Laboratory (DOE-NETL) under award number DE-FE0007514."

Disclaimer

"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

GE Global Research

- First U.S. industrial lab
- One of the most diverse industrial labs (over 2000 technologists)
- Founding principle improve businesses through technology

Global Research - Europe Munich, Germany

Global Software Center
San Ramon, CA

Center
Rio De Janeiro,
Brazil

John F. Welch Technology Center Bangalore, India

China Technology Center Shanghai, China

Project & Team Overview

Project Funding

	Budget (Period 1	Budget Period 2	
	10/01/2011-	-03/31/2013	04/01/2013- 09/30/2014	Total
	Total Planned (\$)	Total Spent (\$) 06/23/2013	Total Planned (\$)	(\$)
GE Global Research	1,097,536	1,243,549	585,394	1,682,930
Western Research Institute	80,777	90,276	42,942	123,719
Georgia Tech	215,922	168,929	186,552	402,474
Idaho National Laboratory	475,000	· · · · · · · · · · · · · · · · · · ·		739,000
Total	1,869,235	1,928,754	1,078,888	2,948,123

- 3-year, \$3M program, 20 % cost share from GE
- BP-1 date revised by 1Q with no cost extension
- BP-1 tasks & spend rate on-target (<± 5 % deviation)
- Project expected to finish on-budget, on-schedule, delivering on all tasks

Project Summary

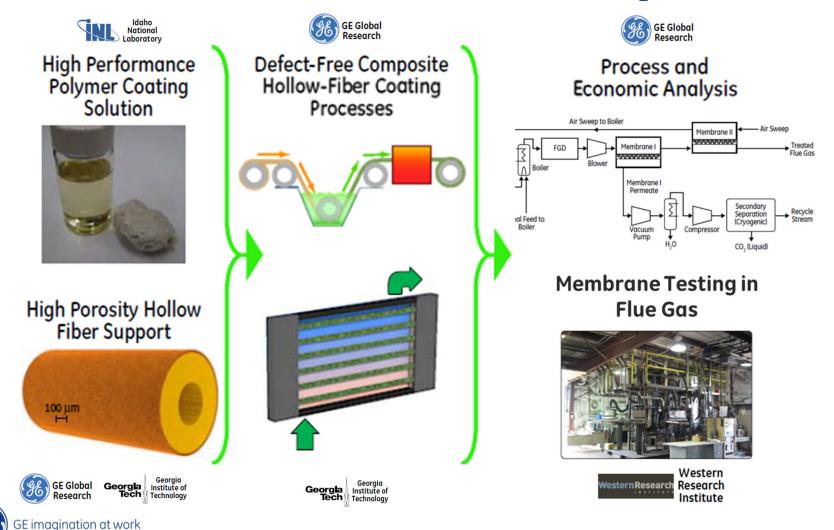
- 3-year, \$ 3M program, 20 % cost share from GE
- Budget period 1: October 2011 March 2013 (no-cost extension June 2013)
- Budget period 2: July 2013 September 2014

Project Objective: Develop bench-scale thin film coated composite hollow fiber membrane materials and processes for CO_2/N_2 separation in coal flue-gas at 60 °C with at least 90% CO_2 capture with less than 35% increase in levelized cost of electricity

- Module design
- Technical & economic feasibility analysis

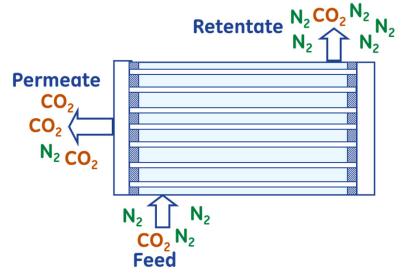
- Polymer development
- Polymer property optimization
- Coating solution development

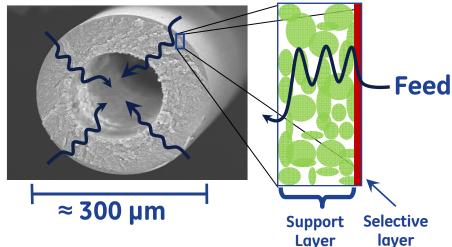
- Fiber coating process development
- Effect of fly ash on membranes
- Modeling of key membrane properties



 Membrane performance validation in coal flue-gas

Project Overview


Develop thin film polymer composite hollow fiber membranes & processes for economical post-combustion CO₂ capture



Technology Overview

Gas Separations Membrane Fundamentals

Schematic representation of post-combustion CO₂ capture using hollow fiber membranes

Permeance (Productivity)

$$P_{CO2} = D_{CO2} * S_{CO2} = \frac{(Flux)_{CO2}.\ell}{\Delta p_{CO2}}$$

$$\frac{P_{CO2}}{\ell}$$
 [=] 1 GPU = $10^6 \frac{\text{cm}^3 \text{(STP)}}{\text{cm}^2 \text{.s.cmHg}}$

Selectivity (Purity)

$$\alpha_{\text{CO2-N2}} = \frac{P_{\text{CO2}}}{P_{\text{N2}}}$$

Solution-Diffusion Process

Gases dissolve in and then diffuse through a membrane

CO₂ Capture Membranes Technology

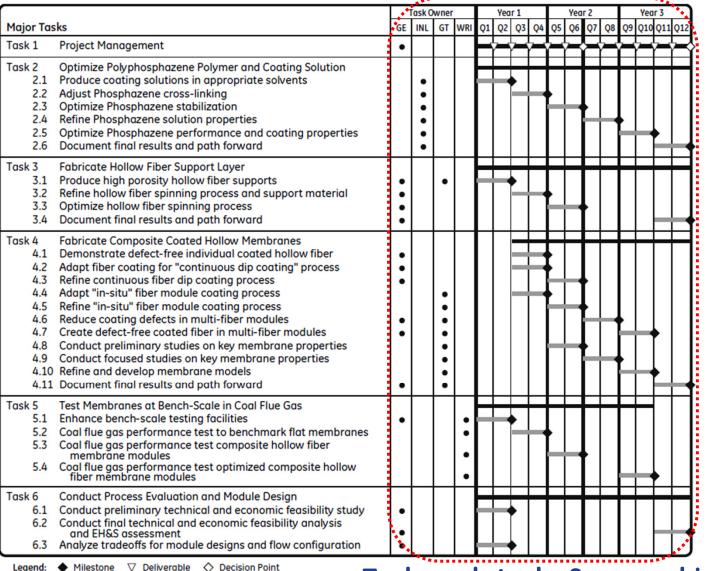
Key Challenges

Post-Combustion Carbon Capture Technology

- Increase in cost of electricity (COE)
- Low membrane driving force
 - Low CO₂ concentration
 - Low feed gas pressure
- Large feed flow rates
 - Large capture system
- Membrane stability
 - Water vapor
 - o SO₂, NO_x
 - o Fly-ash

GE imagination at work

Potential Solution


Hybrid Membrane + Cryogenic Process

- Reduce membrane CAPEX
 - ↓ Membrane module cost
 - ↑ Permeance
- Reduce cryogenic CAPEX
 - ↑ Membrane selectivity
- Increase driving force
 - ↑ CO₂ concentration
 - ↑ Pressure ratio
- Scalable system
 - Composite Hollow fiber membranes
- Robust membrane material
 - Polyphosphazene polymers
 - HF module cleaning methods

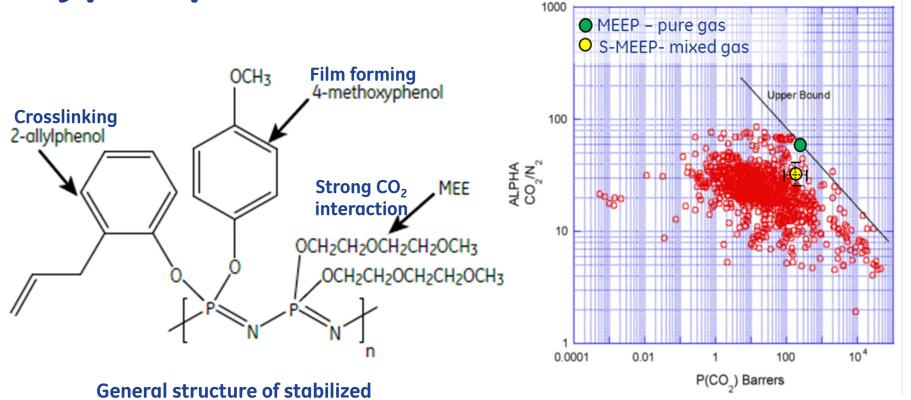
Progress & Current Status

Project Activity Schedule

Tasks, sub-tasks & ownership inter-linked!!

Project Key Objectives

- Task 1 Bring together processes, materials & information generated in the project to move the technology towards deployment
- Task 2 Synthesize polymer, optimize separation performance & develop easily processable coating solutions
- Task 3 Produce highly porous, robust hollow fiber supports
- Task 4 Develop processes to apply ultra-thin layer coatings on hollow fiber supports & elucidate fundamental polymer properties
- Task 5 Exposure & performance test materials & membranes under coal flue-gas
- Task 6 Explore system technical & economic feasibility; conduct module design & fabrication



Project BP-1 Report Card

BP-1 Deliverable	BP-1 Status	
CO_2 selective polymer material with $P_{CO2} = 200$ Barrer, $S_{CO2/N2} \ge 30$	Polyphosphazene materials synthesized with $P_{CO2} = 100-300$ Barrer, $S_{CO2/N2} = 20-40$	
Fabricate high porosity hollow fiber supports	Hollow fiber supports fabricated with $P/\ell_{CO2} \approx$ 1,000-20,000 GPU, surface pore size \approx 20-200 nm	
Develop processes to fabricate defect-free composite hollow fiber membranes	Batch, dip coating (lab-scale); roll-to-roll coating (bench-scale) processes developed. Defect-free 10" membrane modules fabricated.	
Demonstrate stable performance under realistic flue-gas conditions	Hollow fiber membrane module tested under realistic flue-gas mixture. $S_{\rm CO2/N2} = 25-30$. P/ $\ell_{\rm CO2} < 50$ GPU. Membrane ageing observed.	
Preliminary techno- economic analysis study	Membrane systems model developed using Aspen Plus® & Aspen Custom Modeler®	

Polyphosphazene Materials

General structure of stabilized (methoxyethoxy) ethanol phosphazene (MEEP)

Permeability-selectivity plot for CO₂/N₂ gas pair*+

- Low T_g polymers with good CO₂ separation & permeability
- Polymer properties tuned for hollow fiber coatability

⁺C.J. Orme, M.K. Harrup, T.A. Luther, R.P. Lash, K.S. Houston, D.H. Weinkauf, F.F. Stewart, Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes, J. Membr. Sci. 186 (2001) 249

^{*} L. M. Robeson, The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390

Polyphosphazene Materials

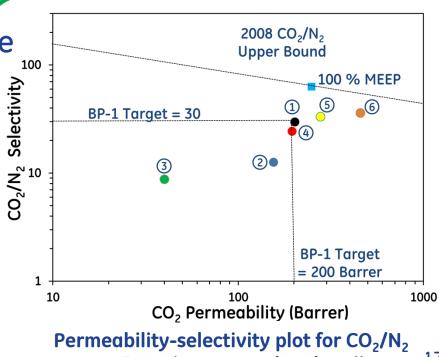
Compatibility

• Solubility in solvents benign to hollow fiber supports

Properties

- Improve physical handling
- High MW to reduce support infiltration

Performance

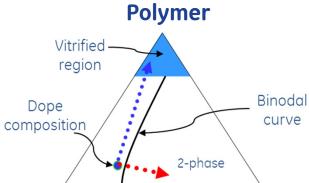

- Achieve target permeability & selectivity
- Long term stability

X-linking Mech.

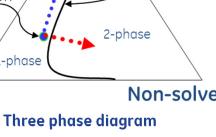
 Maintain dimensional integrity

- Desired polymer characteristics are inter-dependent
- Polymers developed to meet BP-1 targets
- Characterization using NMR, DSC, TGA, permeation testing

at 30 °C (Pure gas-Flat sheet))


Hollow Fiber Support Layer

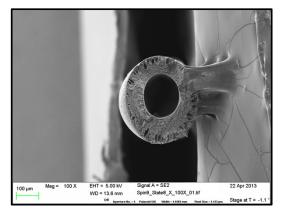
Spin Dope Development

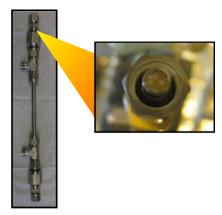

Solvent

Fiber **Spinning**

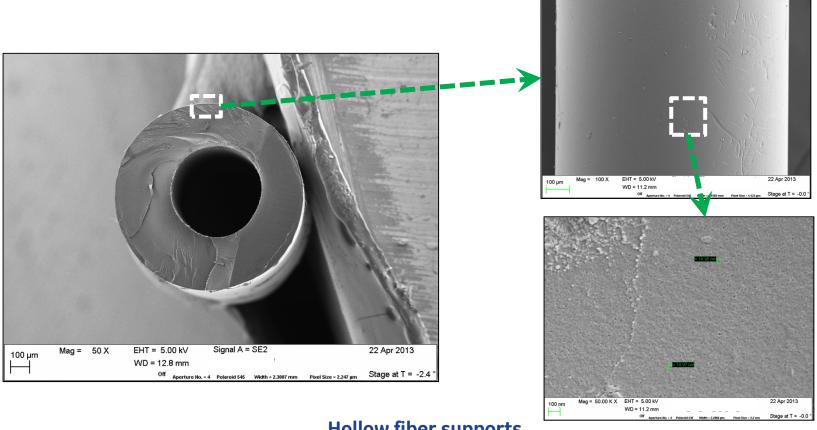
Fiber **Processing**

1-phase Non-solvent




Hollow fiber extrusion process

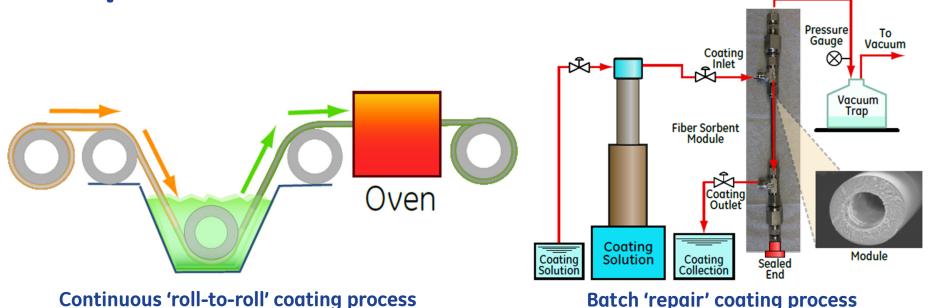
Hollow fiber supports



Fiber solvent exchange process

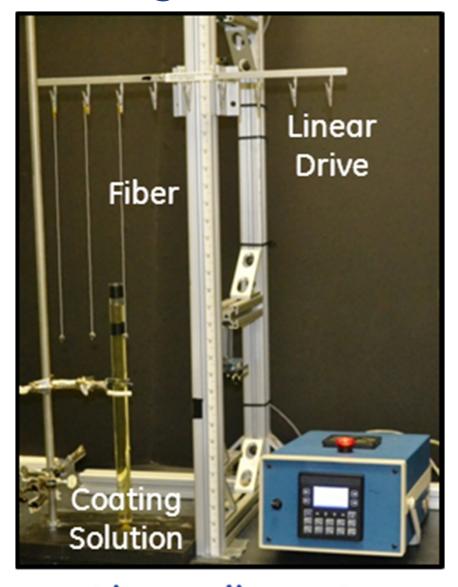
Hollow fiber module

Hollow Fiber Support Layer



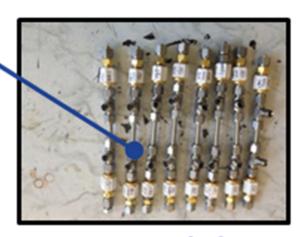
Hollow fiber supports

- Porous, low cost, hollow fiber supports fabricated & spinning parameters optimized
- CO_2 permeance =1,000-20,000 GPU; surface pore size = 20-200 nm


Composite Hollow Fiber Fabrication

- Key factors affecting HF support coatability
 - Reduced surface pore size
 - Substrate pore uniformity
 - Reduced physical handling
- Defect-free membrane modules fabricated & studied for long term performance testing

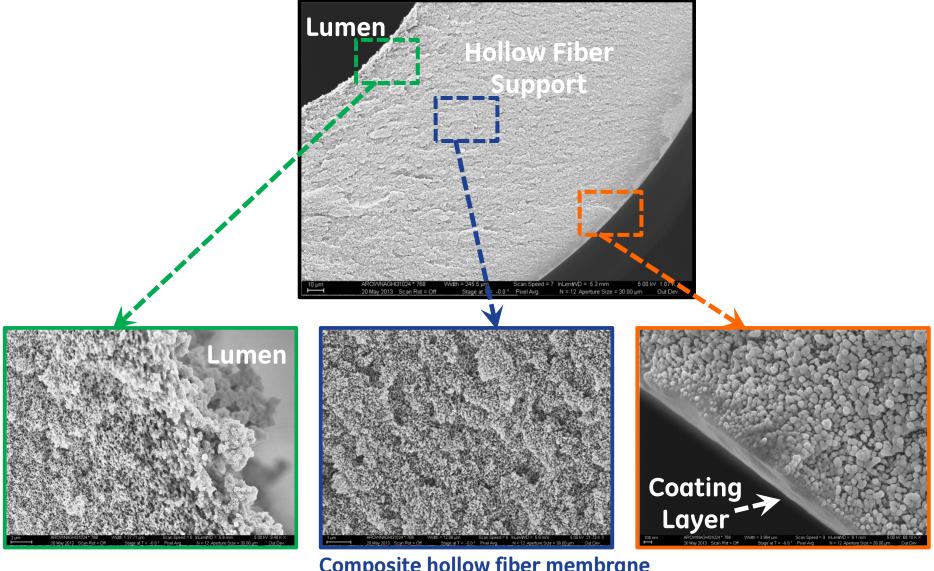
Linear Dip Coating Process



Linear dip coater

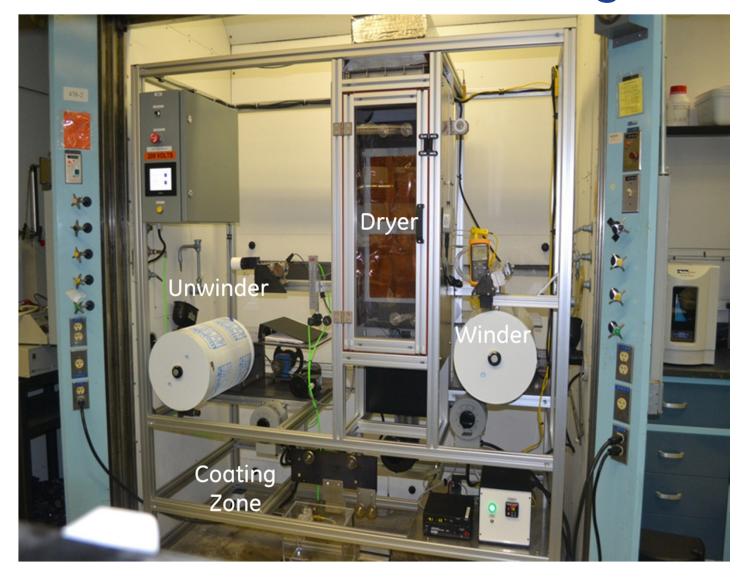
Batch Coating Process

Coating solutions



HF modules

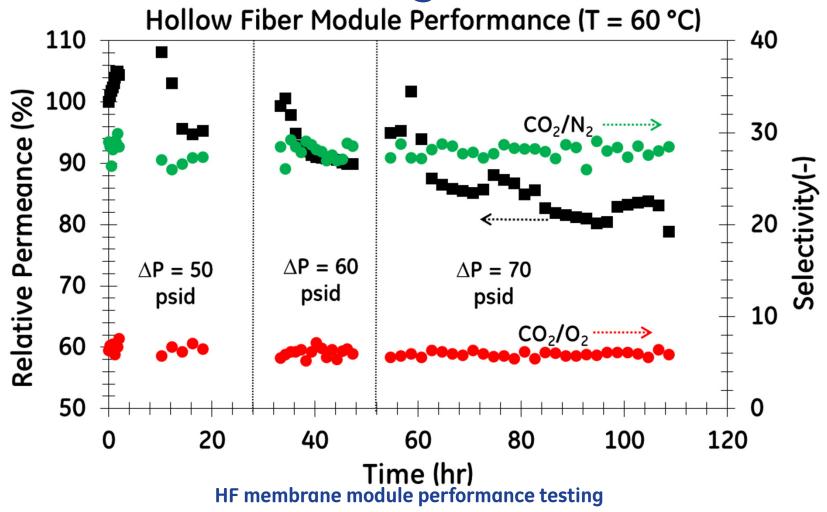
Batch coater


Composite Hollow Fiber Morphology



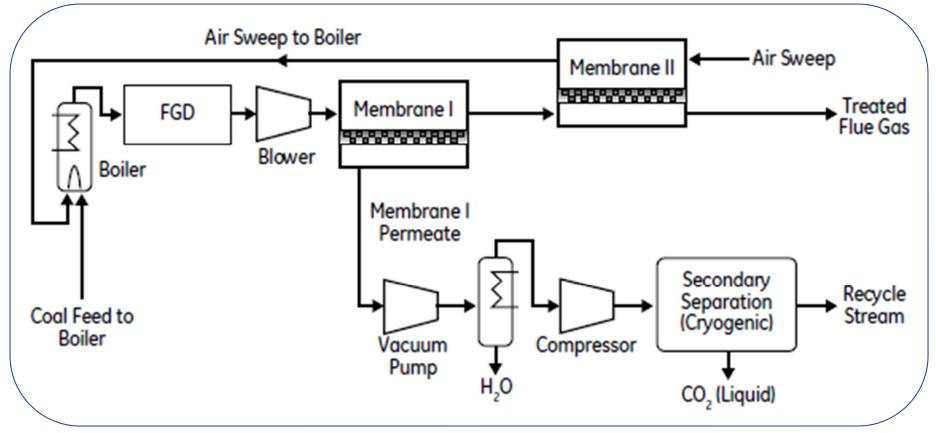
Continuous 'Roll-to-Roll' Coating Process

Membranes Testing



WRI flue gas membrane testing rig (flat sheet & HF modules)

• HF membrane mini-modules (10" length) performance tested for >100 hours under realistic flue gas mixture: $N_2/CO_2/O_2/NO/SO_2$ - 80/15/5/80 ppm/50 ppm (vol. %) saturated with water vapor


HF Membranes Testing

 Hollow fiber membrane module selectivity found to be stable, however; reduction in permeance observed

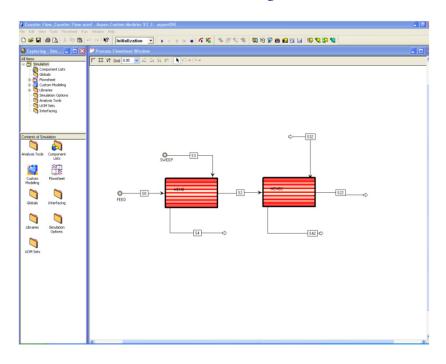
Membrane Systems Considerations

Schematic representation of the membrane process*

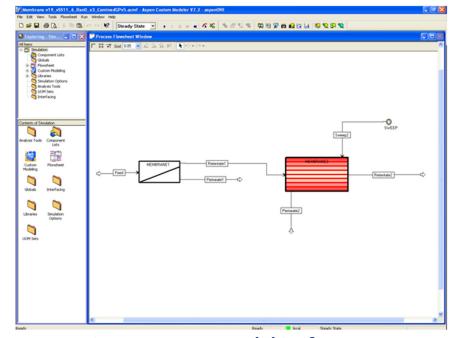
- Various membrane process designs considered
- Two stage membrane process shortlisted for further discussion

GE imagination at work

*Adapted from Merkel, Tim C., et al. "Power plant post-combustion carbon dioxide capture: An opportunity for membranes." Journal of Membrane Science 359.1 (2010): 126-139.

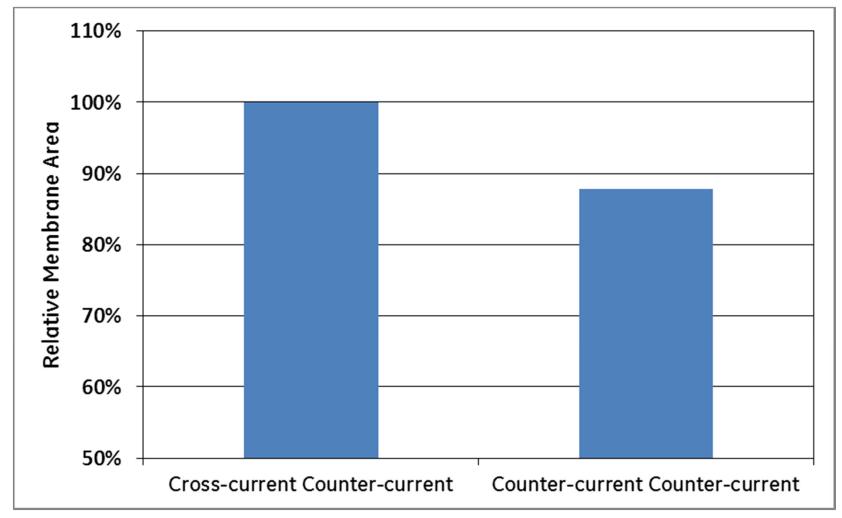

Membrane Systems Considerations

Parameter	Values
Membrane-I/Membrane-II	Vacuum/air sweep
Flue gas composition	DOE baseline case 11* CO ₂ /N ₂ /H ₂ O/O ₂ (vol.%) 13.53/68.08/15.17/2.40
Flue gas flow rate	540 m ³ /s
Flue gas pressure	1.2-3 Bar
Flue gas temperature	45 °C
Membrane Selectivity (CO ₂ /N ₂)	30-80
Membrane Permeance	100-2500 GPU


Summary of economic model assumptions

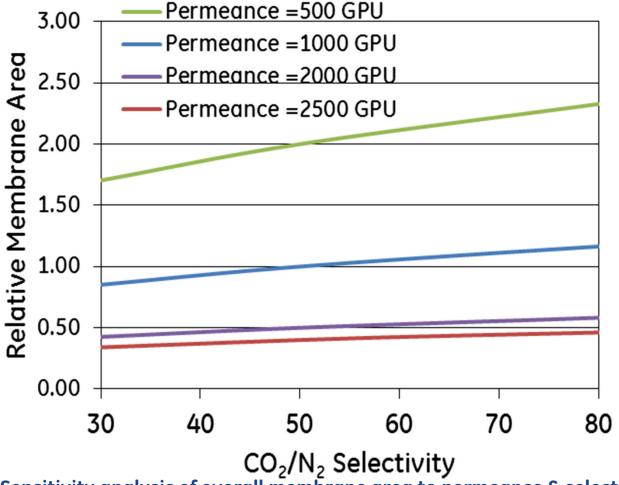
^{*}Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2, November 2010.,DOE/NETL-2010/1397

Membranes Systems Model


Aspen custom model® of countercurrent/counter-current membranes

Aspen custom model® of crosscurrent/counter-current membranes

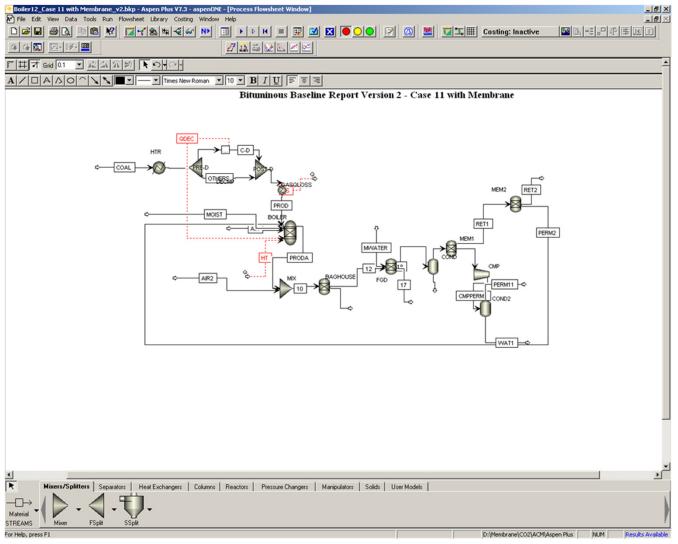
Membranes Model Analysis



Comparison of membrane configurations

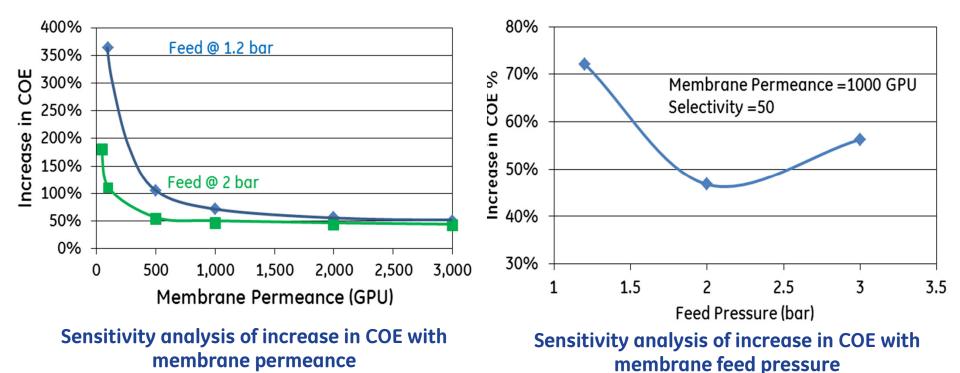
Counter-current/counter-current configuration preferable

Membranes Model Analysis

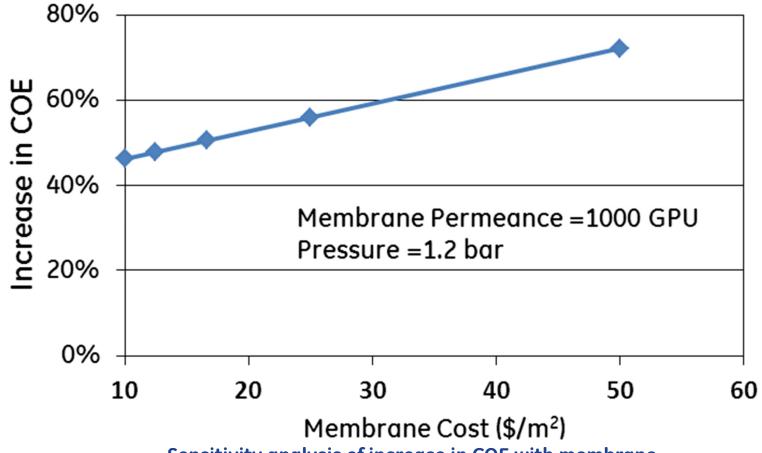

Sensitivity analysis of overall membrane area to permeance & selectivity*

 Overall membrane area highly dependent on permeance and mildly on selectivity in the selected range

^{*}Assumptions – Counter/counter-current membranes, membrane-I pressure ratio = 10


Overall Membranes System Analysis

Aspen Plus® systems model of PC-boiler integrated with CO₂ capture membranes model


Membrane Process COE Analysis

Increase in COE

- Decreases with increase in membrane permeance in the lower range, plateaus at higher permeance range
- Minimum at ~2 bar feed pressure

Membrane Process COE Analysis

Sensitivity analysis of increase in COE with membrane module cost (\$/m²)

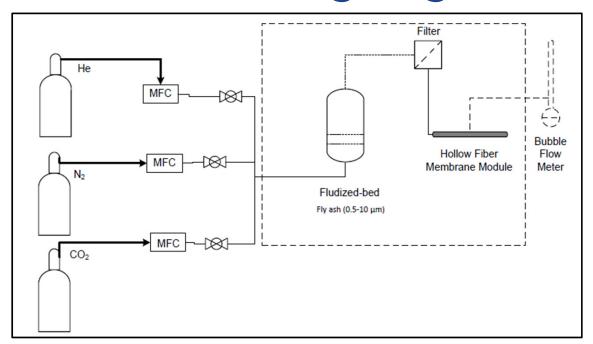
Increase in COE

Decreases with decrease in membrane module cost

Risks & Mitigation Plan

Description of Risk	Probability	Impact	Risk Management
Technical Risks			
Flue gas acidic components (SO _x , NO _x)	Low	Low	Hollow fiber membrane performance found to be stable in flue gas testing
Temperature excursions	Low	Low	Processing and operating temperatures (up to 60 °C) will not degrade polymer layers
Insufficient mechanical durability	Moderate	Moderate to High	Hollow fiber membrane modules successfully tested up to $\Delta p = 70$ psid
Fouling potential from fly- ash/particulates	Moderate	Moderate to High	Polyphosphazene materials have good surface properties. Fouling analysis system to test membrane performance
Permeability and selectivity at 60 °C lower than anticipated	Moderate	Moderate to High	Optimize synthesis strategy and cross-linker content
Hollow fiber permeance lower than anticipated	Moderate	Moderate to High	Optimize coating protocol, modify support surface pores
Resource Risks			
Polyphosphazene materials scalability & availability affects project	Moderate	High	Polymer synthesis process scaled-up (2X). Prevent pre-mature cross-linking by adjusting pendant group loadings

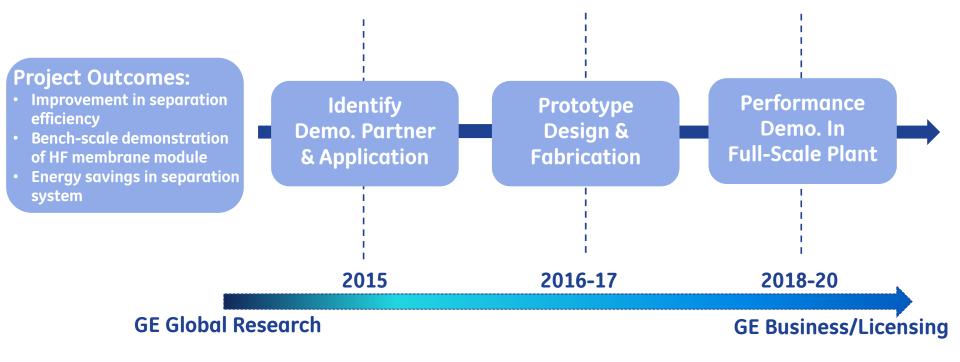
Budget Period-2 Plans & Technology Development Path


Project Activity Schedule: BP-2

Major Tasks			Task Owner			Year 1				Year 2				Year 3		
		GE	INL	GT	WRI	Q1	Q2	Q3	Q4	Q5	Q6	Q7 Q	8 Q9	Q10	Q11 Q12	
	Optimize Polyphosphazene Polymer and Coating Solution Refine Phosphazene solution properties Optimize Phosphazene performance and coating properties		:			F						+	1			
4.7 4.8 4.9	Fabricate Composite Coated Hollow Membranes Reduce coating defects in multi-fiber modules Create defect-free coated fiber in multi-fiber modules Conduct preliminary studies on key membrane properties Conduct focused studies on key membrane properties Refine and develop membrane models	:		•								.	1			
Task 5 5.4	Test Membranes at Bench-Scale in Coal Flue Gas Coal flue gas performance test optimized composite hollow fiber membrane modules				•	F							1			
Task 6 6.2	Conduct Process Evaluation and Module Design Conduct final technical and economic feasibility analysis and EH&S assessment					卜				H		\dagger	t	\dagger		

- Optimize polyphosphazene performance & improve coating solution properties
- Optimize coating protocols for continuous & batch coating processes
- Study HF membrane ageing & fouling
- Conduct final process economics & fabricate 1m HF module

HF Membrane Ageing & Fouling Studies



HF Membrane ageing & fouling analysis setup

- Test setup designed & constructed
- Performance studies on HF modules under → long term saturated simulated flue gas (CO₂/N₂) exposure
- Performance studies on HF modules under → model/real fly ash particle exposure

Anticipated Technology Roadmap

- The team expects to deliver a promising membrane material, HF module & process configuration for membrane ${\rm CO_2}$ capture
- Regulatory challenge exists to implement post-combustion CO₂ capture for coal fired power plant
- Emerging opportunities for CO₂ capture in EOR, NG processing, greenhouses, beverage applications

Conclusions & Work-in-Progress

- ✓ Preliminary techno-economic analysis conducted to determine membrane performance targets
- ✓ Composite hollow fiber membranes developed & performance validated
- Optimize membrane performance & improve coating solution properties
- Optimize coating protocols for continuous & batch processes
- Scale-up membrane module & study HF membrane long-term performance

Thank You

