Evaluation of Dry Sorbent Technology for Pre-Combustion CO₂ Capture

(FE-0000465)

Carl Richardson URS Group

2013 DOE/NETL CO₂ Capture Technology Meeting

Pittsburgh, PA • July 10, 2013

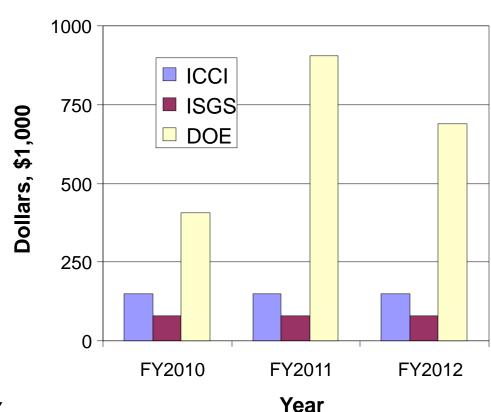
M. Rostam-Abadi Hong Lu Yongqi Lu

Bill Steen
Carl Richardson

Elaine Everitt

Joe Hirsch

Project Funding & Performance Dates


Funding Distribution by Budget Period

BP1: \$ 633,669

BP2: \$1,134,602

BP3: \$ 916,123

Total: \$2,684,394

- Cost Share is 25%
- POP is September 2009 through September 2013

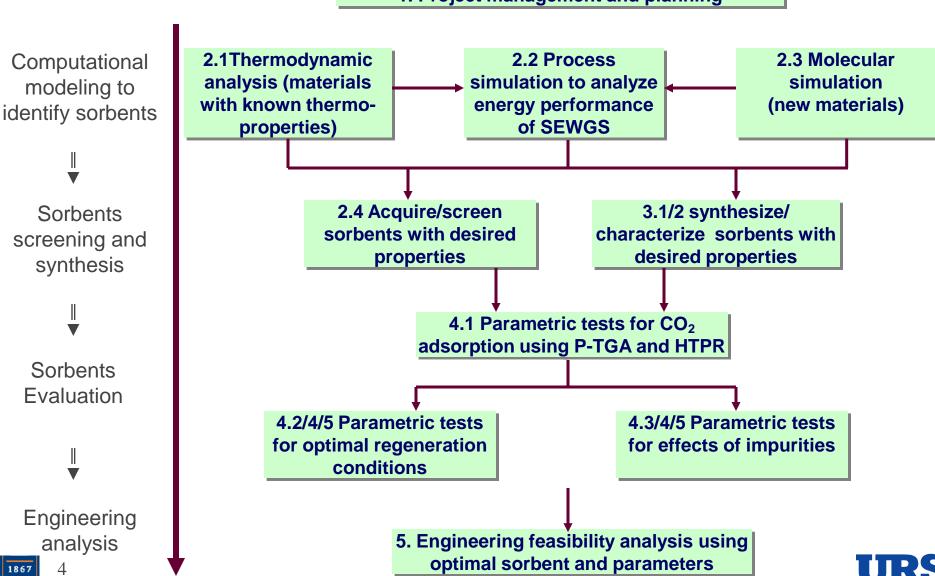
Project Objectives and Scope of Work

Objective

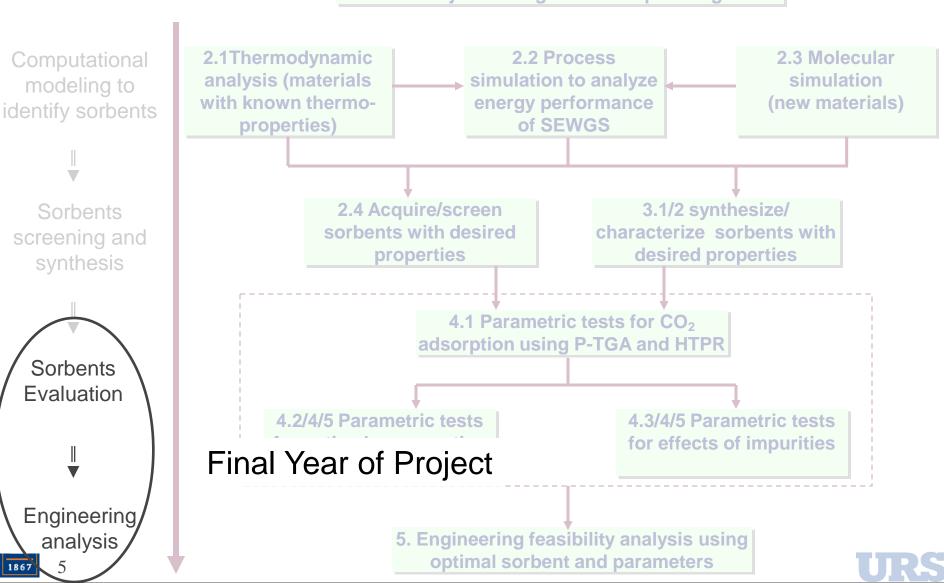
 Identify, develop, and optimize engineered sorbents for a process that combines CO₂ capture with the water gas-shift (WGS) reaction

Scope of Work

- Thermodynamic, molecular and process simulation modeling to identify/predict optimal sorbent properties and process operating conditions
- Synthesis and characterization of sorbents
- Experimental evaluation of sorbents for CO₂ adsorption and regeneration



Techno-economic analysis

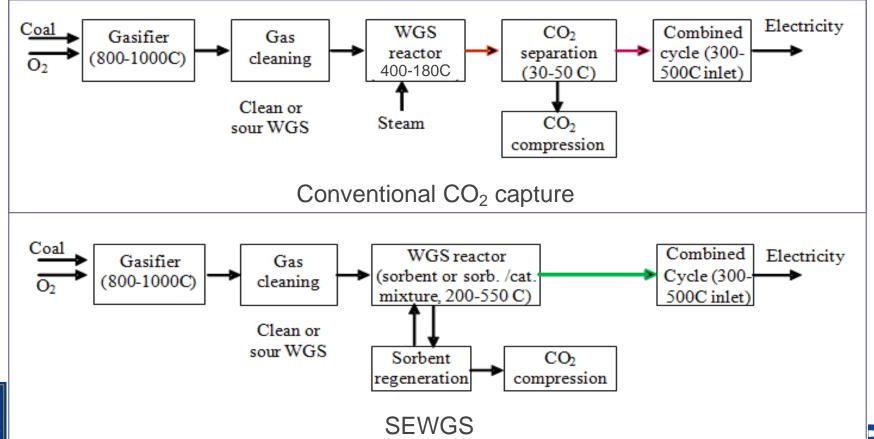

Research Tasks

1. Project management and planning

Research Tasks

1. Project management and planning

Technology Fundamentals/Background


IGCC + SEWGS vs. Conventional IGCC

 $CO + H_2O = CO_2 + H_2$

Exothermic reaction

Kinetically limited at low temperatures, multiple stages / temperatures required

SEWGS can achieve high CO conversion at high temperature

Progress and Current Status

Current Status Overview

Computational Modeling

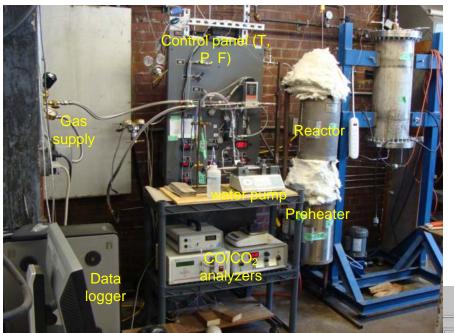
- Thermodynamic Modeling, Process and Molecular Simulations
- Helped down-selected from 'optimal' sorbents

Sorbent Preparation

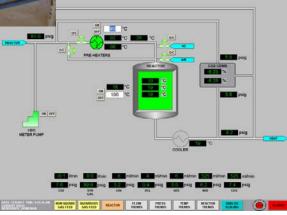
- Goal is to synthesize sorbents per computational modeling and with high capacity, WGS reactivity, long cycle life, etc.
- Ultrasonic Spray Pyrolysis, Flame Spray Pyrolysis, and Molecular Alloying

Sorbent Evaluation

- Analytical Characterization and TGA for screening
- High Temperature, High Pressure Reactor Studies: laboratory simulated, closest to real world conditions short of pilot studies

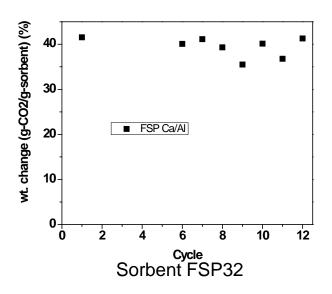

Techno-Economic Study

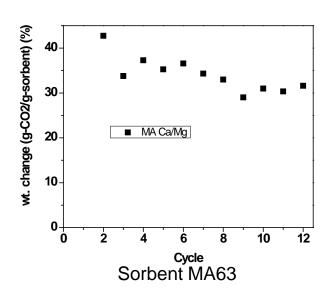
- Evaluated different approaches to process
- Identified keys to economic viability



High Temperature, High Pressure Reactor

- Up to 1000°C, 40 bar
- PLC Controlled
- CO/CO₂ monitoring



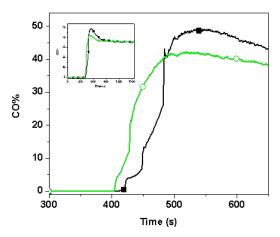

CO₂ Adsorption / Desorption Tests

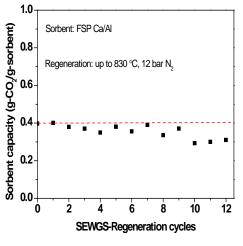
Adsorption in CO₂/N₂ and desorption in N₂

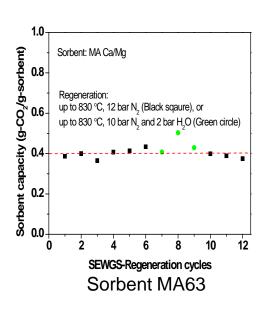
	Temperature,	Time,	P _{CO2} ,	P _{total} , bar	
	°C	min	bar		
Adsorption	650	12*	4	12	
Regeneration	650 ~ 830	~90	0	12	

^{*30} min CO₂ adsorption in Cycle 12.

- Capacity of the sorbents: $0.3 0.4 g_{CO2}/g_{sorbent}$ (70-80% of theoretical)
- Comparison between cycle 12 and cycles 1-11 indicated CO₂ adsorption completed in ≤12 min




SEWGS Performance Tests

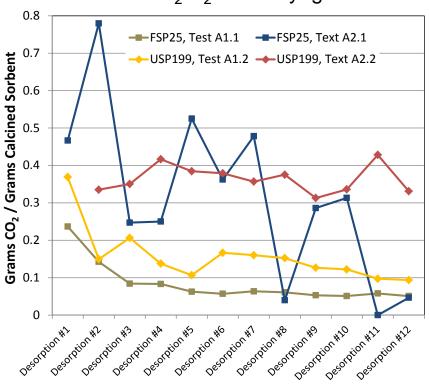

CO₂ adsorption/WGS (SEWGS) in syngas and desorption in N₂ or N₂/H₂O

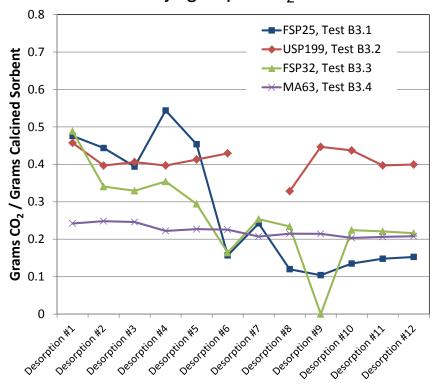
	Temperature, °C	Time, min	P _{co} , bar	P _{H2O} , bar	P _{N2} , bar	P _{total} , bar
SEWGS	650	20	4	8	0	12
Regeneration	650-830	~90	0	0	12	12
Regeneration*	650-830	~90	0	2	10	12

^{*}Regeneration conditions used for Sorbent MA63 in Cycles 7-9.

An example of CO and CO₂ concentration profiles (Sorbent MA63)

Sorbent FSP32


- CO conversion increased from 47% to ~100% with sorbent (equilibrium CO conversion 77% at tested conditions without sorbent)
- Improved sorbent performance in syngas (w/ water vapor)

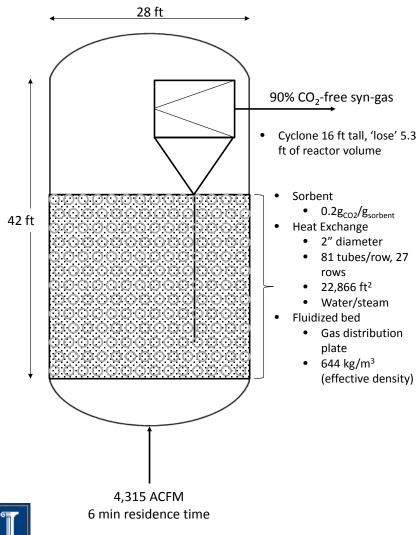


Test Results: Working Capacity and Impact of H₂S

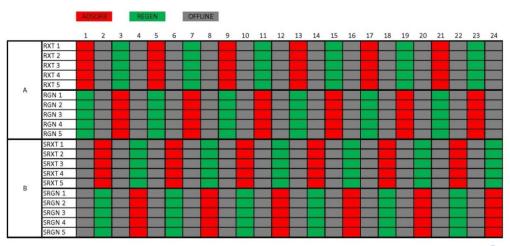
- FSP25 44:56 wt% CaZrO₃:CaO (FSP)
- USP199 25:75 wt% Meyenite:CaO (USP)
- FSP32 1:4 Al:Ca at% (FSP)
- MA63 23:77 wt% MgO:CaO (MA)

- Sorbents perform better in syngas
- USP199 seems to perform better
- Low impact of H2S

HTPR Results: Impact of Steam:CO Ratio on FSP25

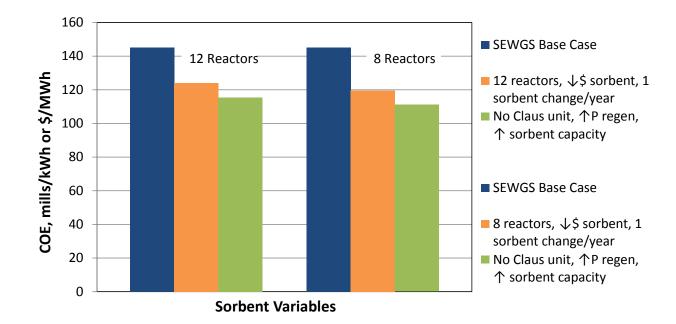


- Steam:CO ratio difficult to control (parametric conditions not always achieved)
- Apparent trend with decreasing ratio of CO conversion
- Conversion lower than observed by ISGS
- Hybrid sorbents may be necessary; could include WGS catalyst usage



Technoeconomic Assessment, Initial Approach

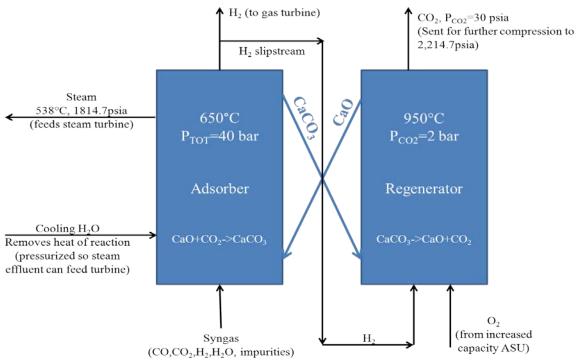
- Reactors switching between adsorption and regeneration
- Heat of adsorption removed by water
- Steam generated superheated to regenerate
- Resulted in long cycle times, many reactors, many heat exchange tubes
- Failed to take advantage of benefits of SEWGS



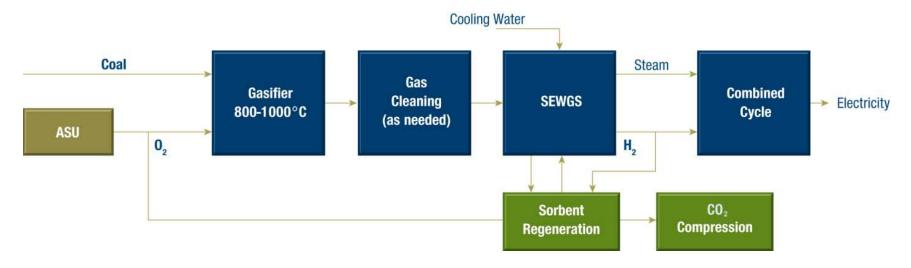
Techno-economic Assessment, Initial Approach

CO ₂ Capture Scenario	TOC (\$M)	COE (mills/kWh or \$/MWh)		
Case 6 (DOE Report)	1,940	119.4		
SEWGS – Base Case	2,208	145.1		
SEWGS – Fewer reactors (1/2)	2,031	136.4		
SEWGS – Fewer reactors (1/3)	1,933	131.9		

Base case for SEWGS not competitive, so assumed fewer reactors, still not competitive....


Even with all optimistic assumptions using initial approach, SEWGS can't compete with Case 6

Techno-economic Assessment, Alternative Approach


- Dedicated adsorbers and regenerators
 - Result: Reduced the number and size of reactors (24 to 12)
- Combust H₂ with O₂ to generate the heat for regeneration
 - Result: Need another ASU and parasitic losses increase, but more efficiently generate pure CO₂
- Design process such that the water used to remove the heat of the adsorption can feed a steam turbine
 - Result: Need another steam turbine, but gain MWe capacity

Techno-economic Assessment, Alternative Approach

Case	ASU Penalty, MW	CO ₂ Comp Penalty, MW	Regen Penalty, MW	Energy Gen. from H ₂ , MW	Energy Gen. from Adsorption, MW	Net MW	COE, \$/MWh
Case 6	-60	-30	-19	464	-0-	497	119
SEWGS, Regen @ 1165°C	-107	-6	-213	251	419	594	128
SEWGS, Regen @ 950°C	-81	-30	-93	371	419	774	98

SEWGS becomes viable, but technological hurdles remain

Summary

- Four nano-engineered sorbents chosen for HTPR testing
- Capacities approaching 0.4 g_{CO₂}/g_{sorbent}
- Performance improved in syngas / water vapor
- No significant impacts of H₂S observed (other impurity studies ongoing)
- Steam:CO ratio still under investigation
- Techno-economics
 - Traditional process approach not competitive
 - More technically challenging approach
 - Creating turbine quality steam from heat of adsorption
 - Moving sorbent from dedicated sorption reactor to regenerator
 - Combusting H₂ slip with O₂ from ASU
 - Economically competitive, but technical challenges remain

Plans for Future Work

- Complete parametric tests with all impurities
 - (H₂S, NH₃, HCl, COS)
- Long-term tests on select sorbents (USP199)
- Revise Techno-economic Assessment
- Final Report

Next Phase

- Determine WGS viability / CO to CO₂ conversion of different sorbents
- Evaluate sorbents in more accurate regeneration environment
- Engineering challenges: reactor design, moving sorbent at operating conditions

Acknowledgments

- U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL), through Cooperative Agreement No. DE-FE-0000465
- Illinois Department of Commerce and Economic Opportunity (IDCEO), through the Office of Coal Development (OCD) and the Illinois Clean Coal Institute (ICCI) under Contract No. 10/US-2

