Sequestration of CO₂ in Basalt Formations

Project Number 58159 Task 1

H. Todd Schaef B. Peter McGrail Pacific Northwest National Laboratory

<u>Collaborators</u> Zhengrong Wang, Yale University

Kevin Johnson, University of Hawaii

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 20-22, 2013

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂ and most common contaminants
- Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO₂. Findings from this project will advance industry's ability to predict CO₂ storage capacity in geologic formations.

Project Overview: Goals and Objectives

- Goal: Provide a path forward for commercial use of deep basalt formations for CO₂ sequestration
- Objective: Address key challenges associated with utilization of basalt formations as CO₂ storage units
 - Conduct laboratory research that addresses commercialscale injection strategies
 - Provide laboratory measurements for predicting CO₂ fate and transport
 - Improved seismic imaging methods for basalt characterization

Project Overview: Scope of work

- Carbonate Mineralization of Basalts in Aqueous-Dominated Fluids
 - Carbonation rates and key variables important to evaluating long term storage of CO₂
 - High pressure scCO₂ batch experiments
 - Diverse set of basalt samples
 - Aqueous dominated reactions, long-term testing
 - Dominates the total carbonation rate in shallower reservoirs
- \succ Basalt Reactions with Wet scCO₂
 - Dominant phase in contact with reservoir rock
 - Long-term experiments reveal rapid carbonation but system is treated as inert in all present reservoir simulators
 - Carbonation rate in deeper reservoirs significant

Basalt with circular calcite coatings after exposure to wet scCO₂ for 100 days.

Project Overview: Scope of work

Multicomponent Gas Systems

- Database to evaluate impact of injecting impure gas streams into basalts (such as in Carbfix project)
- Testing shows carbonate accelerating with some basalts, interference in others
- Current testing matrix includes CO₂ mixtures containing SO₂, O₂, and H₂S

KAROO basalt after 84 days exposure to water and $scCO_2$ containing 1% O_2 and SO_2

Seismic Imaging

- Assess potential for surface seismic monitoring of CO₂ plume
- Utilize Wallula pilot borehole
- Evaluate advanced signal processing algorithms for noise reduction and detection of CO₂ plume

Flood Basalt Features Relevant to CO₂ Sequestration

- Formation process
 - Giant volcanic eruptions
 - Low viscosity lava
 - Large plateaus
 - Multiple layers

Primary structures

- Thick impermeable seals
 - Caprock (flow interior)
 - Regional extensive interbeds
- Permeable vesicular and brecciated interflow zones
 - Injection targets
 - 15-20% of average flow

Deccan Trap Basalts

Layered Basalt Flow

Carbonation of Basalts with Aqueous Dissolved scCO₂

> Static Experiments

- Carbonate precipitates
 - **Discrete** particles
 - Chemical variability ٠
- Calcite, cation substituted

Multi Year Testing

- Cation substitution (Fe, Mn, & Mg) increases with duration
- Surface coating expand into available pore spaces

2.5 years, 100°C, 100 bar

Carbonate Chemistries

Phase Behavior of CO₂-H₂O Mixtures in Geological Sequestration

CO₂-H₂O Mixtures

- CO₂ solubility in water varies little with pressure and temperature
- H₂O solubility in scCO₂ is strongly dependent on depth
- An equivalent geochemical framework for chemical reactivity in wet scCO₂ does not yet exist

Mineral transformation kinetics is potentially as great or greater in wet scCO₂

Intermediate Crystalline Phases During Silicate Carbonation in Wet scCO₂

Forsterite [Mg₂SiO₄] (isolated tetrahedra)

- Reactions occurring between silicates and H₂O-scCO₂ fluids produce well crystallized carbonate minerals at laboratory time scales.
- Water condensation on surface is key to carbonation of silicates
- Amorphous layers are the initial steps to carbonation
- Carbonation rates are initially fast, resulting in metastable phases
- Final product is a stable anhydrous carbonates

Schaef, H.T., McGrail, B.P., Loring, J.S., Bowden, M.E., Arey, B.W., and Rosso, K.M., 2012, "Forsterite $[Mg_2SiO_4)]$ carbonation in wet supercritical CO₂: An *in situ* high pressure x-ray diffraction study." in ES&T, vol 47, 174-181.

Silicate Carbonation in wet scCO₂

- Goal: Determine dependence of metal carbonate formation on the properties of adsorbed water films.
- Experimental Conditions: Constant temperature (50°C) and pressure (90 bar), with dry to variable wet scCO₂.
- Results: Reactivity of forsterite with wet-scCO₂ occurs in distinct adsorbed water concentration threshold regimes:
 - ≤ 2 monolayers: highly-structured chemisorbed waters and bicarbonates.
 - ~2 to ~5 monolayers: Limited carbonation (hydrated)
 - >5 monolayers: Continuous carbonation

ATR-IR Titration Results (CO stretching bands of carbonate)

Thompson, C. J., Martin, P. F., Chen, J., Schaef, H. T.; Rosso, K. M., Felmy, A. R., Loring, J. S. (2013) "Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection", Reviews of Scientific Instruments, submitted.

Wet scCO₂ and Mineral Surface Interactions

What do we know?

- Thin water films develop on silicate minerals
- Water is key to carbonation of silicates

In Situ Infrared Spectroscopy Studies

- Experiments conducted at reservoir conditions
 - 50°C, 90 bar, water saturated scCO₂
- Observed water film growth, mineral dissolution, carbonate formation, and precipitation of amorphous silica (enstatite)

Reactive Behavior

- Enstatite: 1.1 % conversion to MgCO₃
- Plagioclase: 0.3% conversion to CaCO₃/Na₂CO₃

Natural Enstatite (MgSiO₃)

Plagioclase [(Ca,Na)(Al,Si)₄O₈]

Impacts of Contaminants on Mineral Carbonation

Pre- and Oxy-combustion gas streams

- SO₂, H₂S, O₂, NOx
- Corrosive when mixed with H₂O and CO₂

SO₂-CO₂ Testing

- Extensive dissolution
- In situ XRD identified sulfite minerals
 - Mg sulfite (MgSO₃·3H₂O)

SO₂-CO₂-O₂ system

- Gypsum, jarosite-alunite phases
- Extreme pH conditions
- Carbonation onset after ~100 days testing

Reactions Between Basalt and $scCO_2$ containing 1% H_2S (538 days)

Dynamic System

- Well crystallized surface coatings
- Various degrees of carbonation preceding pyrite formation

Pyrite observed coating a large dolomite grain on CR basalt

EDX Analysis													
Element	Wt%												
Carbon	27	20											
Oxygen	45	47											
Magnesium	9	5											
Calcium	18	19											
Iron	1	4											
Sulfur	nd	4											

14

Chemical Variations Occurring within Precipitates exposed to $scCO_2$ containing 1% H₂S (1250 days)

Characterizing Surface Corrosion

Reaction Products

- Corrosion correlatable to amount of H₂S in reactor
- Carbonates formed regardless of H₂S content
- Variable Reaction Rates
 - Most reactive basalts contain highest amount of Fe^(III)
 - KAROO-low Fe^(III) content

Schaef, H. T., B. P. McGrail, et al. (2013). "Mineralization of basalts in the CO_2 -H₂O-H₂S system ." <u>International</u> Journal of Greenhouse Gas Control, vol 16, 187-196

Forsterite Carbonation in the Presence of Wet scCO₂ and Na Citrate

Impacts of organics

- Presence of Na-citrate inhibits metastable phases
- Overall carbonation attenuated
- Evidence of hydrated amorphous phases in TGA-MS

Organic compounds mobilize in scCO₂ and impact silicate carbonation.

This work is a part of a collaborative effort between Yale University and PNNL.

Pilot Studies and Commercial Partnerships

Demonstration project

- Injection of ~1000 metric tons CO₂ in to CR basalts
- Side wall core retrieval during FY14
- Underground thermal energy storage concept
 - Utilize similar basalt reservoirs as CCUS
 - Subsurface energy storage solution

Underground Thermal Energy Storage

18

Accomplishments

\blacktriangleright Basalt formations are a viable option for long term storage of CO₂

- Water bearing supercritical CO₂ reactions
 - Carbonation significant and comparable to aqueous dominated system
 - Intermediate carbonate phases precursor to stable carbonates
 - o In situ techniques illustrate important role of water in carbonation processes
- Mixed gas systems (SO₂, H₂S, O₂)
 - o Precipitation of sulfur containing minerals
 - o Variable reactivities associated with different basalts
 - New evidence pointing to key role of Fe(II)/Fe(III) redox chemistry
 - Subsurface chemistry is key to co-sequestration
- Implications of organics on silicate carbonation in wet scCO₂
- Collaboration with University of Hawaii and Yale University
- Published laboratory results have significantly benefited and been directly used in pilot sequestration projects
 - CarbFix Project (Hellisheidi, Iceland)
 - Boise Wallula ICCS Project (Eastern Washington)
- Results also being applied for independent energy storage study in CRB

Summary

Key Findings

- Reactions occurring between basaltic rocks and H₂O-scCO₂ fluids produce carbonate minerals.
- Reactions occurring in water bearing scCO₂ fluids are equally important.
- Sulfur species effectively and permanently removed from scCO₂.
- Organic compounds mobilize in wet scCO₂ and impact carbonation.

Long Term Implications

 This research is providing a path forward for eventual commercial use of basalt formations for CO₂ sequestration.

"CO₂ storage in basalt formations is also a potentially important option for regions like the Indian subcontinent " IEG Technology Roadmap, 2009.

FY 14 Activity Summary

- Continue long term basalt experiments with supercritical acid gases.
- Expanded scope to examine importance of water bearing scCO₂
- Continued support for basalt pilot project

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

					Detailed Schedule																																		
					FY2011											FY2012												FY2013											
				Oct Nov Dec Jan Feb Mar April May June July Aug Sep										Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Aug	Sept	Oct I)ct Nov Dec Jan Feb Mar April May Jun								ne July Aug Sept					
	Task Name						1																		[i			i					
#	Project Management	Start	Finish	-	1		-	1			-																												
1	Manage Project	Oct-09	Sep-13		1	1	1	1			1													1				[1							- 1			
2	Carbonate Mineralization of Basalts with CO2	Apr-10	Apr-13														_													_							_		
3	Carbonate Mineralization of Basalts with Gaseous Sulfur CO2	Jul-10	Jul-13				i T																																
4	Basalt Reacgtions with Wet scCO2	Jul-10	Jul-13			-																																	
5	Seismic Imaging	Jul-10	Jul-13		-	+		-			1																-		_	_									
			Milestone				1										- 1										- 1			- 1	1		1	1					
	Milestone Descriptio	on	Date		1		.				,						_														- 1			- 1	-				
6	Quarterly Reports	Reports			1		1				1	r												Ĺ					Ī								_		
7	article on Basalt reactivity va with reservoir depth in super CO2 and aqueous phases	ariability rcritical	Apr-11			<u> </u> 				•	İ													İ															
8	Milestone FY12 Q3 Issue journal article on characterizing pure silicate in wet scCO2		May-12				İ															•																	
	Milestone EV12 O1 Issue io	urnal			+			+																														-	
9	article on mineralization kinetics of	Sep-12		ļ		<u> </u>	-																		٠							Ì							
	basails in 002-120-120 mixtures.																							ļ															
10	Milestone FY13 Q2 Issue journal article on mineralization kinetics of	3 Q2 Issue journal ralization kinetics of S C2 H2C C2 Mar-13	al s of Mar-13	Mar-13																														•					1
mixtures.	,2																																						
10	Milestone FY13 Q3 Complete analysis of seismic imaging data collected at the Wallula basalt pilot borehole	Jun-13																																•					
Proje in Ba	ect: Sequestration of CO2 salt Formations	Task	e	•																															2	2			

Bibliography

- McGrail, B. P., H. T. Schaef, et al. (2006). "Potential for carbon dioxide sequestration in flood basalts." <u>Journal of Geophysical Research-Solid Earth</u> **111**(B12201): ARTN B12201.
- Schaef, H. T. and B. P. McGrail (2009). "Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide." <u>Applied Geochemistry</u> 24(5): 980-987.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696
- Schaef, H. T., B. P. McGrail, et al. (2010). "Carbonate mineralization of volcanic province basalts." <u>International Journal of Greenhouse Gas Control</u> 4(2): 249-261.
- Schaef, H. T., B. P. McGrail, et al. (2011). Basalt reactivity variability with reservoir depth in supercritical CO₂ and aqueous phases. <u>GHGT10</u>. Amsterdam, Netherlands, Energy Procedia: 4977-4984.
- Schaef, H. T., B. P. McGrail, et al. (2012). "Forsterite [Mg₂SiO₄)] Carbonation in Wet Supercritical CO₂: An *in situ* High Pressure X-Ray Diffraction Study." <u>Environmental</u> <u>Science & Technology</u>, vol 47, 174-181.
- Miller, Q., Thompson, C., et al. (2013). "Insights into silicate carbonation in water bearing supercritical CO₂", IJGGC, Vol 15, 104-118.

Bibliography (cont.)

- Schaef, H. T., B. P. McGrail, et al. (2013). "Mineralization of basalts in the CO₂-H₂O-H₂S system ." <u>International Journal of Greenhouse Gas Control</u>, vol 16, 187-196.
- Schaef, H.T., Q.R.S. Miller, C.J. Thompson, et al., Silicate Carbonation in Supercritical CO₂ Containing Dissolved H₂O: An in situ High Pressure X-Ray Diffraction and Infrared Spectroscopy Study, Energy Procedia, vol 37, 5892-5896.
- Schaef, H. T.,J. A. Horner et al., (2013), Mineralization of Basalts in the CO₂-H₂O-SO₂-O₂ System, <u>Environmental Science & Technology</u>, submitted.
- Thompson, C. J.; Martin, P. F.; Chen, J.; Schaef, H. T.; Rosso, K. M.; Felmy, A. R.; Loring, J. S. (2013) "Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection", Reviews of Scientific Instruments, submitted.