TAGGING CO$_2$ TO ENABLE QUANTITATIVE INVENTORIES OF GEOLOGICAL CARBON STORAGE
DOE AWARD #DE-FE0001535

Cantwell Carson
The Earth Institute
Columbia University
Presentation Outline

- Benefit to the program
- Project overview: Why ^{14}C for MVA?
- Technical status: Cartridges, injections, lasers
- Summary
- Organizational chart
- Collaborators
Benefit to the Program

• Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.

Permanent storage of CO₂ can be demonstrated by adding carbon-14 (¹⁴C) prior to injection. This research project aims to demonstrate this by tagging fossil CO₂ with ¹⁴C at a field site. When completed, this system will show that ¹⁴C can be a safe and effective tracer for sequestered CO₂. A laser-based ¹⁴C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program’s effort of ensuring 99 percent CO₂ storage permanence in the injection zone(s) (Goal).
• **Project Overview: Why use 14C in MVA?**

• Radiocarbon, or 14C:
 – Long half-life radio isotope: $\tau_{1/2}=5730$ years
 • Produced naturally by cosmic radiation
 • Made artificially by neutron capture
 – Ambient concentration: 14C/12C $\approx 10^{-12}$
 – Concentration in fossil fuels: 14C/12C $< 10^{-14}$

• Fossil-based CO$_2$ has ~100x less 14C than natural (biogenic) CO$_2$

• 14CO$_2$ is chemically identical to 12CO$_2$ and can indicate fixation

\[^{14}\text{N} + n \rightarrow ^{14}\text{C} + p \]
Coal Use

100 pMC

Use

14C tagging

Monitoring

Leakage?

<1 pMC

CO$_2$ storage

CO$_2$ → Ca(CO$_3$)?
Coal

>1 pMC

Plants → Process

100 pMC

Monitoring

Leakage?

CO$_2$ storage

CO$_2$ → Ca(CO$_3$)$_2$?
14C tagging

- Tag intended at ≈ 1 part per trillion
 - This limits subsurface concentration to ambient levels
 - Makes fossil based CO2 look like bio-based CO2
 - Requires 1 g 14CO2 per million ton CO2
- 1-day tag limits liability in the event of accidental release
• **14C filling station**

 – Produced calibrated SF$_6$-CO$_2$-water tag cartridges

 – Produced 14CO$_2$-water solutions with 190 pCi, 9.3 nCi and 37 nCi 14CO$_2$
• Tagging very large stream with very small tag (1 in 10^{12})
 • 1 g 14CO$_2$ for 1 M ton CO2
• Needs to demonstrate accuracy and precision
• Potential injection into super critical or liquid CO$_2$
• Needs to be demonstrated at lab scale and in field test
• Bench-scale high-pressure flow loop
 – Turbulent flow regime
 – Pressurized CO\textsubscript{2} flow loop to 1457 psi CO\textsubscript{2}, 33 °C, supercritical regime
 – Injected SF\textsubscript{6} solution into super critical CO\textsubscript{2} at the 100 part-per-trillion level with error of <5%
• We need a method to monitor, record, and control injection on-line and in real time
• Verification and accounting necessary at injection
• Standard methods are not viable for this application:
 • Accelerator Mass Spectrometry is a batch method
 • Liquid Scintillation Counting is too slow
• Development of laser-based currently pursued
• Development of 14CO$_2$ Detector
• IntraCavity OptoGalvanic Spectroscopy (ICOGS)
 – Initial results were very promising
 • Potential for fast, inexpensive, online 14C measurement at the part-per-trillion (Modern) level

Murnick et al., Analyt. Chem. 2008

Original positive results

Laser pulses repeatedly excite 14CO$_2$ molecules in a glow discharge
Which changes the discharge temperature
Which changes the discharge conductivity

Lenfest Center for Sustainable Energy
Earth Institute | Columbia University
• Development of 14CO$_2$ Detector

We can measure:
- Laser power
- Laser wavelength
- Cell pressure
- Sample flow rate
- OG voltage

We can control:
- Laser cavity position
- Laser modulation mode
- Cell pressure
- Sample flow rate
- Cell discharge power
• Laser-based 14CO$_2$ detector
 – Assembled Intra-Cavity Opto-Galvanic Spectrometer (ICOGS)

- Spectrum Analyzer
- IR camera
- Webcam
- 14CO$_2$ laser
- Oscilloscope
- Pressure controller
- Mass flow controllers
- Sample stage
- RF excitation and detection
- Valve to vacuum pump

• Not shown:
 • Turbo pump
 • NI CompactDAQ
 • NI programmable power supplies
• Detection circuitry
 – Designed new filtering and amplifying circuitry for OG signal
 – Revealed a large transient at short times
 – Attributed to the response of the buffer gas to large changes in laser power (~40 W)
 – Appears to dominate signal when the laser is operated by generating a series of laser pulses ("Chopping mode") at ~100Hz
• Cavity Modulation
 – Developed new signal generation method: Cavity modulation
 – Generates a signal by changing the length of the laser at ~100 Hz
 – Produces a smoothly varying change in power and laser wavelength
 – Signal generation with cavity modulation was confirmed by external OG cell measurement on 12CO$_2$.
 – Similar signal to noise ratio when measuring CO$_2$ concentration.

The deviation for cavity modulation (red) is shown against that of laser chopping (green) for 12CO$_2$.

\[y = 0.2024x^{-0.474} \quad R^2 = 0.8815 \]

\[y = 0.0265x^{-0.299} \quad R^2 = 0.9122 \]
• Development of 14CO$_2$ Detector
 – We were unable to see a signal in Cavity modulation
 – Indicates that most, possibly all, of the measured signals have been background fluctuations
 – Comparison with HITRAN data highlights an adjacent 12CO$_2$ absorbance line, 200 – 111, P(19)e
 – Work to explain role of P(19)e in ICOGS data is underway...

Scans do not reveal an intracavity response with cavity modulation
• Prospects for 14CO$_2$ Detector
 – Recent publications out of Uppsala University in Sweden have also highlighted this lack of reproducibility
 – Earlier results from Columbia are now attributed to small confounding pressure changes between samples
 – We are currently looking to use highly enriched samples to establish a quantitative lower limit of detection
 – Detection may be easier on other 14CO$_2$ laser lines away from 12CO$_2$ lines

Murnick et al., Analyt. Chem. 2008

Persson et al., Analyt. Chem. 2013

Original, promising results

Recent results highlighting irreproducibility of original results
- Development of 14CO$_2$ Detector
 - 12CO$_2$ background lower at other 14CO$_2$ laser lines.

14CO$_2$ line = 849.781825 cm$^{-1}$

14CO$_2$ line = 851.489499 cm$^{-1}$

P(18)

P(20)
• Future Plans
 – Carry out 14C detector experiments with highly enriched samples (>1k Modern)
 – Inject 14CO$_2$ into laboratory high-pressure flow loop
 – Inject 14CO$_2$ at CarbFix pilot injection site in Iceland
Organizational Chart

Columbia University

- Klaus Lackner, PI: Oversight and development of 14C-detector
- Alissa Ah-Hyung Park, co-PI: Construction of high-pressure flow loop
- Juerg Matter, co-PI: Field tests at CarbFix site in Iceland

Barnard College

- Martin Stute, co-PI: Construction of 14C detector and filling station design
- Cantwell Carson, postdoc: Construction of 14C detector
- Yinghuang Ji, student: Construction of filling station, testing flow loop
Collaborators:

- University of Groningen
 - Harro Meijer
 - Dipayan Paul

- Access Laser
 - Yong Zhang

Thank you!
Appendix

– Gantt Chart
– Bibliography
Gantt Chart

Year 1

Task 1.0 - Project Management, Planning, and Reporting
- Subtask 1.1 Project Management Plan
- Subtask 1.2 Reporting and Budgets
- Subtask 1.3 Presentation and Briefings
- Subtask 1.4 Final report

Task 2.0 - Design of the ^{14}C Supply Units and Microcartridge Systems for Tracer Injection
- Subtask 2.1 Construction of a filling station
- Subtask 2.2 Design and fabrication of a syringe system to hold dissolved tracer gas
- Subtask 2.3 Design and fabrication of a microcartridge system to hold compressed tracer gas
- Subtask 2.4 Optimization of selected injection system

Task 3.0 - Laboratory Scale Evaluation of Injection Systems
- Subtask 3.1 Design and Construction of High Pressure Flow System for Mixing
- Subtask 3.2 Testing Supply/Injection System with SF$_6$
- Subtask 3.3 Testing Supply/Injection System with 14CO$_2$

Task 4.0 - Development of 14CO$_2$ Detection System

Task 5.0 - Field Tests of Developed 14CO$_2$ Tagging Systems

Task 6.0 - Hazard and Environmental Analyses

Year 2

Task 1.0 - Project Management, Planning, and Reporting

Task 2.0 - Design of the ^{14}C Supply Units and Microcartridge Systems for Tracer Injection

Task 3.0 - Laboratory Scale Evaluation of Injection Systems

Task 4.0 - Development of 14CO$_2$ Detection System

Task 5.0 - Field Tests of Developed 14CO$_2$ Tagging Systems

Task 6.0 - Hazard and Environmental Analyses

Year 3

Task 1.0 - Project Management, Planning, and Reporting

Task 2.0 - Design of the ^{14}C Supply Units and Microcartridge Systems for Tracer Injection

Task 3.0 - Laboratory Scale Evaluation of Injection Systems

Task 4.0 - Development of 14CO$_2$ Detection System

Task 5.0 - Field Tests of Developed 14CO$_2$ Tagging Systems

Task 6.0 - Hazard and Environmental Analyses
Bibliography

• **Journal articles:**