Model Complexity and Choice of Model Approaches for Practical Simulations of CO₂ Injection, Migration, Leakage, and Longterm Fate

Project Number DE-FE0009563

Karl W. Bandilla Princeton University

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and
Infrastructure for CCS
August 20-22, 2013

Presentation Outline

- Project Goals and Objectives
- Project overview
- Accomplishments
- Summary

Benefit to the Program

- The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO₂ sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.
- Develop Best Practice Manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization; public outreach; well management activities; and risk analysis and simulation.

3

Project Overview:Goals and Objectives

- Goal: Develop a suite of models, across a broad spectrum of complexity, and determine when simplified models are appropriate for CO₂ sequestration modeling.
- Project objectives:
 - Assemble a suite of models across the range of complexity
 - Compare the performance of models of different complexity when applied to actual sites
 - Develop a set of practical criteria that can guide the choice of model complexity

Project Overview:

Project Members

Core members:

- Princeton University: M. Celia (PI), K.
 Bandilla, B. Guo, E. Leister
- Lawrence Berkeley National Lab: J. Birkholzer (co-PI), A. Cihan, S. Finsterle, Q. Zhou

Affiliates:

- University of Bergen: J. Nordbotten, E. Keilegavlen
- CIPR: S. Gasda
- University of Stuttgart: R. Helmig

Project Overview:

Technical Status

- Spectrum of model complexity
- New algorithm developments
- Site selection
- Model comparison
- Model complexity and design optimization

Domain

Model Complexity

New Algorithms

Dynamic Vertical Drainage

simplified 3-D

10 years

20 years

50 years

Invasion Percolation

Site Selection

- Sleipner (9th layer of Utsira formation)
- Basal Aquifer
- In Salah
- Ketzin (CO2SINK)
- Cranfield (Phase III Early Test)

Sleipner Data

Basal Aquifer Data

Model Comparison

- Compare model results to find criteria for choice of appropriate level of complexity
- Different complexity for different questions:
 - Shape and areal extent of CO₂ plume
 - Areal extent of pressure response
 - Migration of fluids out of injection formation

Initial Basal Aquifer Comparison

numerical vertical equilibrium

numerical single-phase

semi-analytic vertical equilibrium

analytic single-phase (Theis)

Optimization

 Provides inverse modeling capabilities for multi-phase simulator TOUGH2 or, via PEST interface, other forward prediction tools

Realism

Increasing

iTOUGH2 involves a suite of global and local

optimization methods

Forward Predictors

- (1) Analytical Solutions
- (2) Vertically Integrated **Numerical Two-Phase** Flow Models

 - Sharp-Interface Models
 Vertically Integrated Multi-Phase Models
 CO₂ migration in complex
 - CO₂ migration in complex and heterogeneous systems
- (3) Simulator TOUGH2
 - Multi-phase flow in full 3D systems

ncreasing

Accomplishments to Date

- Established research team and distributed responsibilities.
- Completed review of existing CO₂ sequestration modeling approaches and their application to actual sites.
- Collected and analyzed data for Sleipner and Basal Aquifer.
- Completed study on the impact of model complexity on basin-scale pressure response in the Basal Aquifer.

Accomplishments to Date (cont)

- Developed, implemented and tested vertical drainage dynamics algorithm.
- Developed and implemented algorithm for macroscopic invasion percolation modeling including viscous effects.

Conclusions

- Vertical drainage dynamics algorithm improves the vertical-equilibrium approach and is able to accurately predict CO₂ plume migration under many practical conditions.
- Single-phase sufficient for basin-scale pressure response, but semi-analytic solutions are likely not sufficient.

Future Plans

- Data collection for additional sites
- Improve vertical drainage dynamics algorithm
- Improve viscous invasion percolation algorithm
- Model comparison
- Development of best practices manual

THANK YOU!

Karl Bandilla
Princeton University
bandilla@princeton.edu

Appendix

Organization Chart

	BP1 (2012-2013)				BP2 (2013-2014)				BP3 (2014-2015)			
	1 10/1 -12/31	2 1/1 – 3/31	3	4 7/1 – 9/30	1 10/1 -12/31	2	3	4 7/1 – 9/30	1 10/1 -12/31	2	3 4/1 – 6/30	4 7/1 – 9/30
Task 1: Proj Mgmt and Planning												
Subtask 1.1: PMP And KickOff	MS											
Subtask 1.2: Project Planning and Reporting												
Task 2: Development Of New Models												
Subtask 2.1: Review And Analyze Existing Models			MS									
Subtask 2.2: Models with Vertical Drainage Dynamics				MS			MS					
Subtask 2.3: New Percolation Model					MS			MS				
Task 3: Model Existing Injection Operations					MS		MS	MS		MS		
Task 4: Optimization Models							MS		MS	MS		
Task 5: Criteria for Model Complexity											MS	

light grey: accomplished; dark grey: planned; MS: mile stone

Bibliography

- Huang, X., Bandilla, K.W., Celia, M.A., Bachu, S., (under review), Basin-scale modeling of CO2 storage using a cascade of models of varying complexity. International Journal of Greenhouse Gas Control.
- Celia, M.A., Nordbotten, J.M., Bandilla, K.W., Gasda, S., Guo, B., 2012, Multi-scale Modeling and Model Complexity in CO2 Sequestration Simulations; invited talk; presented at American Geophysical Union 2012 Fall Meeting, San Francisco, CA, 3rd-7th of December 2012.
- Guo, B., Bandilla, K.W., Celia, M.A., 2012, Inclusion of Vertical Dynamics in Vertically-integrated Models for CO2 Storage; poster; presented at American Geophysical Union 2012 Fall Meeting, San Francisco, CA, 3rd-7th of December 2012.