

CO₂ Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery DE-FC26-01NT41148

James E. Locke & Richard A. Winschel CONSOL Energy Inc.

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and
Infrastructure for CCS

Presentation Outline

- Benefit to the program
- Project overview
- Technical status
- Accomplishments
- Summary
- Appendix

Benefit to the Program

This project will demonstrate the effectiveness and the economics of carbon sequestration in an unmineable coal seam with enhanced coal bed methane (ECBM) production.

Project Overview: Goals and Objectives

- Demonstrate horizontal drilling in underground coal seams
- Devise economical drilling strategies to maximize both CO₂ sequestration potential and CBM recovery,
- Define effective CO₂ injection methods and procedures,
- Measure the impact of CO₂ injection on CBM recovery,
- Monitor the CO₂ concentrations in the water and gas phases to determine the stability of sequestered CO₂ over an extended period of time, and
- Assess the overall economics of CO₂ sequestration (\$/ton),
 including the co-benefit of methane production in coal seams.

Project Overview:

Tasks

20,000 short ton injection goal

- Examine effective methodology for injecting CO₂ gas into an unmineable coal seam
- Determine the impact of CO₂ injection on ECBM

Environmental Monitoring

- Deep well gas & produced water
- USDW zone monitoring well gas & water
- Residential drinking well water
- Stream water
- Soil gas, surface gas, & tracer gas monitoring

Geophysical Work

- Seismic surveys
- Cleat & fracture model development
- Reservoir modeling
- Tilt meter monitoring

Technical Status: Background

Project Location

Marshall County, West Virginia, USA

Target Formation

- Upper Freeport coal seam (1,200-1,800 ft deep)
 - 4-6 ft seam to the north & west
 - 1-2 ft seam to the south & east
- Pittsburgh coal seam overlying ~600 ft.

Technical Status: Timeline

Technical Status: Site Layout

Improved Pumping System Activities (2012 – Current)

- New injection pumping system installation and troubleshooting
- UIC permit modification 1,400 psig
- UIC permit extension Dec. 31, 2013
- Increased injection pressure operation
 - Step Rate Test: September 11, 2012 Successful
 - Pressure limited injection (09/12/12 02/09/13)
 - MH-18: 1.3 tons per day @ 934 psig
 - MH-20: 4.9 tons per day @ 933 psig

Improved Pumping System Activities (2012 – Current)

- Increased injection pressure operation
 - MH-20 shut-in tilt meter study
 - Started 02/09/13
 - Booster pump bearing failure on 02/12/13
 - Subsequent leak around shaft
 - Area pipeline rupture
 - Resumed tilt meter study on 06/24/13
 - MH-18 injection pressure decrease from \sim 1,350 psig to \sim 1,210 psig
 - MH-18 injection rate increase from ~13 tpd to ~16 tpd
 - Reopened MH-20 on 07/30/13: presently ~21 tpd, total at ~1,150 psig
 - Awaiting tilt meter results
- >4,300 short tons injected through July 31
- Anticipate \sim 7,000 short tons, project total (Dec. 31)

Daily Cumulative Tons of CO₂ Injected

Technical Status: CBM Production

Technical Status: CBM Production

Technical Status: CBM Production

Potential Gas Production Impact

New pump start-up: Sept. 12, 2012

Operation through Feb. 11, 2013:

- 153 days
- **3,149** hrs
- 20.6 hr/day
- 801 tons CO2 injected

28% CBM production rate increase (Feb. vs. Sept. daily rate)

CBM Well MH-11

Month	Average Daily CBM Production (MCF)
August ('12)	13.9
September ('12)	13.9
October ('12)	13.9
November ('12)	15.4
December ('12)	16.4
January ('13)	17.5
February ('13)	17.8

Technical Status: Monitoring

Technical Status: Monitoring

Pittsburgh Seam Production Well CO₂ Concentrations

Technical Status: Monitoring

AOR Gas Monitoring Results:

AOR Gas Wells

Well No.	% CO ₂	SD
1588		
Baseline Average	0.31	0.04
Post injection average	0.41	0.14
Most recent value	0.35	
2974		
Baseline Average	0.70	0.05
Post injection average	1.22	0.50
Most recent value	1.54	
4407		
Baseline Average	0.79	0.05
Post injection average	0.54	0.27
Most recent value	0.35	
MC-5		
Baseline Average	2.82	0.38
Post injection average	3.31	0.83
Most recent value	4.36	

Aquifer-Zone Wells

787 - 11 BT -	0/ CO	CD
Well No.	% CO ₂	SD
WVU #1		
Baseline Average	0.05	0.02
Post injection average	0.09	0.06
Most recent value	0.12	
WVU #2		
Baseline Average	0.06	0.03
Post injection average	0.07	0.04
Most recent value	0.14	
WVU #3		
Baseline Average	0.05	0.01
Post injection average	0.20	0.18
Most recent value	0.44	

Upper Freeport Monitoring Wells

Well No.	% CO ₂	SD
MH-26		
Baseline Average	0.20	0.27
Post injection average	0.06	0.07
Most recent value	0.02	
MH-27		
Baseline Average	0.53	0.72
Post injection average	0.09	0.04
Most recent value	0.08	

Accomplishments to Date

- > > 4,300 tons CO₂ injected
- Injection studied at 700 psig, 933 psig, now at 1,400 psig limit
- Injection planned through YE2013
- > No conclusive signs of plume migration
- > Working closely with academia
- Provided a platform for Master's and Ph.D. research

Summary

Key findings

- Increased "at-rest" formation pressure over time
- Injection rate consistency at higher pressure
- Evidence of ECBM production

Lessons learned

- Down-dip drilling not suitable for CBM wells
- Injection operations for vapor lock control

Future plans

- Examine CBM production impact
- NETL tracer injection evaluation
- Continue injection through December 2013
- Two years of post-injection monitoring

Acknowledgements

Environmental monitoring, geophysical work, data review, soil and tracer gas sampling and analysis.

Funding provided in part by the U.S. Dept. of Energy under Cooperative Agreements No. DE-FC26-01NT41148 and No. DE-FC26-04NT42262

CO₂ Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery DE-FC26-01NT41148

James E. Locke & Richard A. Winschel CONSOL Energy Inc.

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage

Questions?

Appendix

Organization Chart

Bibliography

Wilson, T.H.; Siriwardane, H.; Zhu, L.; Bajura, R. A.; Winschel, R. A; Locke, J. E.; and Bennett, J.; 2012, Fracture model of the Upper Freeport coal: Marshall County West Virginia pilot ECBMR and CO2 sequestration site, Int. J. Coal Geol., doi:10.1016/j.coal. 2012.05.005.

Wilson, T. H.; Tallman, J.; Rauch, H.; Wells, A.; Smith, D.; 2003, Reconnaissance Studies of a Pilot Carbon Sequestration Site in the Central Appalachians of West Virginia, Northeastern Geology & Environmental Sciences, v. 25, no. 4, p. 330-345.