Prototyping and testing a new volumetric curvature tool for modeling reservoir compartments and leakage pathways in the Arbuckle saline aquifer: reducing uncertainty in CO$_2$ storage and permanence

Project Number (DE-FE0004566)

Jason Rush
(W. Lynn Watney, Joint PI)

University of Kansas Center for Research
Kansas Geological Survey

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the Infrastructure for CO$_2$ Storage
August 20-22, 2013
Presentation Outline

• Benefits, objectives, overview
• Methods
• Background & setting
• Technical status
• Accomplishments
• Summary
Benefit to the Program

• Program goal addressed:
 Develop technologies that will support the industries’ ability to predict CO₂ storage capacity in geologic formations to within ± 30 percent.

• Program goal addressed:
 This project will confirm — via a horizontal test boring — whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If validated, a new fracture characterization tool could be used to predict CO₂ storage capacity and containment, especially within paleokarst reservoirs.
Project Overview:
Goals and Objectives

Evaluate effectiveness of VC to identify the presence, extent, and impact of paleokarst heterogeneity on CO₂ sequestration within Arbuckle strata

– Develop technologies that demonstrate 99% storage permanence and estimate capacity within +30%.
 • Predict plume migration...within fractured paleokarst strata using seismic VC
 • Predict storage capacity...within fractured paleokarst strata using seismic VC
 • Predict seal integrity...within fractured paleokarst strata using seismic VC

– Success criteria
 • Merged & reprocessed PSTM volume reveals probable paleokarst
 • Within budget after landing horizontal test boring
 • VC-identified compartment boundaries confirmed by horizontal test boring
Presentation Outline

• Benefits, objectives, overview
• Methods
• Background & setting
• Technical status
• Accomplishments
• Summary
Methods

• Merge, reprocess, interpret PSDM 3-D seismic
• PSTM & PSDM VC-processing (Geo-Texture)
 – Pre-processing: Raw, Basic PCA, Enhanced PCA, Robust PCA
 – Lateral wavelength resolutions: high (~50-ft), medium (~150-ft), long (~500-ft)
• Build pre-spud fault & geocellular property models
• Locate, permit, drill, and log horizontal test boring
• KO & lateral, slimhole & hostile, logging program with Compact Well Shuttle™
 – Triple combo
 – Full-wave sonic
 – Borehole micro-imager
• Formation evaluation & image interpretation
• Seismic inversion, variance & ant track
• Construct discrete fracture network (DFN) Model
• Revise fault, facies, and property models
• Simulate & history match
Presentation Outline

• Benefits, objectives, overview
• Methods
• Setting & background
• Technical status
• Accomplishments
• Summary
Age & Regional Setting

System Series
- **North American Series**
- **British Series**

<table>
<thead>
<tr>
<th>Ordovician</th>
<th>Early</th>
<th>Late Cambrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llanvirnian</td>
<td>Arenigian</td>
<td>Tremadocian</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Series</th>
<th>British Series</th>
<th>Ma</th>
<th>Global Magneto-zones</th>
<th>Kansas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordovician</td>
<td>Early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ixbian</td>
<td>488</td>
<td>T (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trenadocian</td>
<td>488</td>
<td>T (N)</td>
<td>Cotter Dolomite</td>
</tr>
<tr>
<td></td>
<td>Arenigian</td>
<td>478</td>
<td>A (R)</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Llanvirnian</td>
<td>468</td>
<td>L (R1), L (N1)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Whiterockian</td>
<td>458</td>
<td>C (N), L (R4)</td>
<td>Simpson Group</td>
</tr>
<tr>
<td>North American Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maps
- **Laurentia**
- **Tippecanoe lowstand**
- **Coastal plain**
- **Intracratonic basin**
- **Shallow marine**

Laurentia
- **Equator**
 - Equator (Golenka, 2002)

Tippecanoe lowstand
- Exposed Precambrian
- Exposed Lower Ordovician carbonates

Map courtesy of Ron Blakey
Kansas Setting

Structure Map — Early Paleozoic

Arbuckle Isopach Map

W–E Cross Section — Central Kansas Uplift

Karst Process-Based Model
Presentation Outline

• Benefits, objectives, overview
• Methods
• Background & setting
• Technical status
• Accomplishments
• Summary
Study Area — Bemis Shutts Field

Structure Map
Study Area — Bemis Shutts Field

Structure Map

1. southwestern Bemis-Shutts Field
2. Field discovered in 1928
3. Cumulative production ~265 MMBO
4. Production Lansing–Kansas City and Arbuckle
5. In 2011, 615 producing wells
6. Note “sinkhole” geometries
Arbuckle Analog

Whiterockian Paleokarst Outcrop Analog — Nopah Range
Common Morphologies

A. Modern karst zone
 - Paleocavern fill
 - Collapsed slabs
 - Tilted and folded disturbed host rock

B. Phase 1: Modern Cave System
 - Active Cave Systems
 - Subaerial Exposure Surface (Unconformity)

C. Phase 2: Multiple Near-Surface Cave Systems Developed at Composite Unconformity
 - Long-term Exposure
 - Composite Subaerial Exposure Surface (Composite Unconformity)
 - Relict Cave Systems

D. Phase 3: Paleocave System Collapses and Coalesces
 - Suprastratal Deformation
 - Burial and Collapse
 - PALEOCAVE EXPLORATION TARGETS

E. Type of Recharge
 - Via Karst Depressions
 - Diffuse
 - Hydrogenic

F. Dominant Type of Porosity
 - Angular Porous
 - Fissures
 - Intergranular
 - Radial Pasages
 - Anomalous Anhydrous Wases
 - Profile

G. VC

Sources:
- Loucks et al., 2004
- Palmer, 1997
- Loucks et al., 2004

KU Kansas Geological Survey
Field Setting

Core Description — Paleokarst Rock

A

<table>
<thead>
<tr>
<th>Core Depth</th>
<th>Precursor Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>3612.5-3615.4</td>
<td>Karst-modified carbonate</td>
</tr>
<tr>
<td>precursor strata</td>
<td>Very well-sorted fine eolian sands</td>
</tr>
<tr>
<td></td>
<td>Rip-up clasts</td>
</tr>
<tr>
<td></td>
<td>Wispy, clay seams</td>
</tr>
<tr>
<td></td>
<td>Flat-pebble conglomerate</td>
</tr>
<tr>
<td></td>
<td>Wispy, clay seams</td>
</tr>
<tr>
<td>3600-3601.5</td>
<td>Dolostone</td>
</tr>
<tr>
<td>precursor strata</td>
<td>Kast-modified carbonate</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Core Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3612.5-3615.4</td>
<td>Karst-modified carbonate</td>
</tr>
<tr>
<td>3600-3601.5</td>
<td>Very well-sorted fine eolian sands</td>
</tr>
<tr>
<td>3621-3623</td>
<td>Crackle breccia</td>
</tr>
<tr>
<td>3628.9-3631.4</td>
<td>Chaotic breccia</td>
</tr>
<tr>
<td>3814.5-3687.3</td>
<td>Matrix-supported chaotic breccia</td>
</tr>
</tbody>
</table>

Code | Name | Parent | Color | Pattern |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dilational Fracture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bedding-Dolomi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Matrix-support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crackle Breccia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chaotic Breccia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Time & Depth Migration

Arbuckle PSTM

Arbuckle PSDM

Average Velocity to

Arbuckle Velocity & Well
Volumetric Curvature

- A measure of reflector shape:
 - Most-positive: anticlinal bending
 - Most-negative: synclinal bending
- Multi-trace geometric attribute calculated directly from the 3-D seismic volume
- Calculated using multiple seismic traces and a small vertical window
- The analysis box moves throughout the entire volume
- VC attributes can be output as a 3-D volume
- Provides quantitative information about lateral variations
PSDM VC Processing Results

VC-processing by Geo-Texture Technologies
Arbuckle PSDM VC Horizon-Extraction

area shown on next slide
Proposed Lateral to Test VC Attributes

Objectives:
- Land well outside paleocavern
- Drill through paleocavern
- TD in “flat-lying” host strata
- Run Triple, Sonic, Image tools

wow...no mud losses
Image Log Facies — Facies Model

Chaotic

Bedding

Dilational Fracture

Dilational Fracture

Chaklic Breccia

Bedding

Open Fracture

Matrix-Supported Breccia

Chaotic Breccia

Bedding

Dilational Fracture

Matrix-Supported Breccia

Chaotic

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Parent Color Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dilational Fracture</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bedding-Dolomi</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Matrix-supported</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crackle Breccia</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chaotic Breccia</td>
<td></td>
</tr>
</tbody>
</table>
VC-indicated Compartments
Consistent with Log Interpretations
Formation Evaluation
Formation Evaluation

- Svug %

Other diagrams and data elements related to formation evaluation, including fault-bound paleocaverns and separate vug porosity.
New Field-Wide Fault Model

~201 Faults...thanks to Rock Deformation Research plug-in
VC-Faults *Match* Seismic Faults
Probability Maps for Conditioning

Geocellular Models

Facies

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Parent</th>
<th>Color</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dilational Fracture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bedding-Dolomite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Matrix-supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crackle Breccia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chaotic Breccia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dilational Fractures

Crackle & Chaotic Breccia

Peritidal Dolostone & Matrix-Supported Breccia

- evaporite karst in host strata
 - strata-bound breccia
 - anhydrite-filled molds
 - geochemistry-sulfates
Facies Model
3-D PSDM Seismic Porosity Attribute

Petrel’s™ genetic inversion tool
Porosity Model

averaged vertically
Permeability Model
Discrete Fracture Network Modeling

Fracture Aperture (ft)

McCord-A 20H Image Log Interpretation

Aperture Statistics

- Mean: 0.0321
- Median: 0.011
- Mode: 0.001
- Standard Deviation: 0.0511
- Sample Variance: 0.00261
- Kurtosis: 8.646
- Skewness: 2.790
- Range: 0.331
- Minimum: 0.000
- Maximum: 0.332
- Sum: 14.523
- Count: 453
- Confidence Level (50.0%): 0.00396
3-D Volumetric Curvature Volume

VC muted
Reflector flat
Filtered 3-D VC Geocellular Model

- orthophoto draped over DEM
- surface faults
- 3-D cells (volumetric curvature attribute)
- Horizon at top Heebner Shale
- Cell concentrations below Heebner reflect Arbuckle paleokarst
- VC cells absent
Key Findings & Interpretations to Date

- Fault-bounded doline confirmed
- Dolines coincident with VC-identified radial lineaments
- Interior drainage
- Headward-eroding escarpment
- Disappearing streams/springs/fluvial plains
- Fracture system O-age
 - reduces seal risk?
Presentation Outline

• Benefits, objectives, overview
• Methods
• Background & setting
• Technical status
• Accomplishments
• Summary
Accomplishments to Date

- Merged & reprocessed seismic
- PSTM & PSDM VC processing
- Built pre-spud model
- Drilled ~1800-ft lateral to test VC
- Ran extensive logging program
- Formation evaluation

- Simulated pre-spud model
- Inversion & genetic inversion
- Probability maps
- Property modeling
- ASME Peer Review
- DFN modeling
Presentation Outline

- Benefits, objectives, overview
- Methods
- Background & setting
- Technical status
- Accomplishments
- Summary
Summary

• Key Findings
 – Direct **confirmation** of VC-identified, fault-bound, paleokarst doline
 – **3-D VC PSDM** for complex structural settings
 – Pre-spud history-match **non-unique solution**
 – **VC-filtering** reveals vertical extent of faults

• Lessons Learned
 – **VC attributes fractal**, requires some constraints
 – **Lost-in-hole tool insurance** can overwhelm budget

• Future Plans
 – **Cost analysis** vs other seismic attributes or interp. methods
 – Analyze uncertainty of **flux between blocks**
 – **Simulate** & history match new models