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Benefit to the Program

= Research will develop and validate a portfolio of simplified
modeling approaches to predict the extent of CO, plume
migration, pressure impact and brine movement for a
semi-confined system with vertical layering

= These approaches will improve existing simplified models
In their applicability, performance and cost

= The technology developed in this project supports the
following programmatic goals: (1) estimating CO,, storage
capacity in geologic formations; (2) demonstrating that 99
percent of injected CO, remains in the injection zone(s);
and (3) improving efficiency of storage operations



Benefit to Stakeholders

Provide project developers with simple tools to
screen sites and estimate monitoring needs

Provide regulators with tools to assess geological
storage projects quickly without running full-scale
detailed numerical simulations

Enable risk assessors to utilize robust, yet simple
to iImplement, reservoir performance models

Allow modelers to efficiently analyze various CO,
Injection plans for optimal well design/placement



Project Overview
Goals and Objectives

= Objective = Develop and validate a portfolio of
simplified modeling approaches for CO, sequestration
In deep saline formations

o Simplified physics-based modeling - where only the most
relevant processes are modeled

o Statistical-learning based modeling - where the simulator
IS replaced with a “response surface”

0 Reduced-order method based modeling - where
mathematical approximations reduce computational burden

o0 Uncertainty and sensitivity analysis — to validate the
simplified modeling approaches for probabilistic applications
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Simplified Physics Based Models
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Simplified Physics Based Models

Approach (using GEM)
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Simplified Physics Based Models

Dimensionless Injectivity

AP — COco, In(rdry/rw)+ In(rBL/rdry)+ |n(re/rBL)

2kH | 1y, Mg, 1/ p,
27kH
I:)D,jump — qu, APjumP

Py, versus df,/dS, ¢ xgg z gi? :z j 1
) XVoh 035, 1—0 If P, can be predicted,
’ 4 wrosnoo|  then g v/s AP relationship can
° be established
: ¥ Next steps = Fitting data
2 Pp = f{df,/dS;; Vpp, I}

0 1 2 3dfg/dsg4 5 6 7




Simplified Physics Based Models

Sweep Efficiency
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Statistical Learning Based Models
Background

Goal = replace physics-based
model with statistical equivalent I

-

Experimental design = BB

selection of points in parameter
space to run limited # of
computer experiments

Response surface =
functional fit to input-output data .
to produce “proxy” model

Two common options

— Box-Behnken (BB) design
3-pt + quadratic response surface

— Latin Hypercube sampling (LHS)
multi-point + higher-order model

LHS
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Statistical Learning Based Models
Example - Metamodel Fits
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Data from 2-D STOMP
simulations of CO2
injection into closed
systems (Arches province)

36 run full-factorial design

— 3 stratigraphic columns
(injection depth)

— 4 well patterns

— 3 permeability groups

Cross validation using 12
mutually exclusive subsets
(33 training + 3 test data
points) with 100 replicates

Similar results for CO2_R
and PCT_CO2
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Statistical Learning Based Models
Generation of Experimental Designs

Box-Behnken Alternative
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Reduced Order Method Based Models
Background (1)

Simulator
| : Production/
Controls Y Injection Rate
POD-TPWL

= Proper Orthogonal Decomposition (POD)

O Represent high-dimensional state vectors (e.qg.,
pressure & saturation in every grid block) with small
number of variables by feature extraction

= Trajectory Piecewise Linearization (TPWL)

a Predict results for new simulations by linearizing

around previous (training) simulations
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Reduced Order Method Based Models
Background (2)

Order
reduction

Y

POD

+

Nonlinearity
treatment

Y

TPWL

Linear expressions
w/ 100s of variables

Y

POD-TPWL

= Retain the physics of the original problem

= Overhead is required to build the POD-TPWL model

= Evaluation of POD-TPWL model takes only seconds

= Applied previously to oil-water problems for
optimization and history matching (Cardoso and
Durlofsky 2010, 2011; He et al. 2011, 2013)
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Reduced Order Method Based Models
Example — POD-TPWL Performance
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Accomplishments to Date

Completed sensitivity analyses to identify factors influencing

= reservoir/caprock pressure buildup and CO, plume migration
0
83 = |dentified possible predictive model functional forms for
dimensionless injectivity and CO, storage efficiency
= Completed evaluation of metamodeling techniques
= (2" order polynomial, kriging, MARS, ACE)
)
(7') = Completed Box-Behnken design based simulations for
generating response surface based simplified models
% = Investigated applicability of POD-TPWL for CO, injection into
<=  saline aquifers using a compositional simulator
8: = Evaluated different constraint reduction approaches
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Summary

SPBM

Developed insights into two-phase region injectivity and
sweep based on detailed simulations

Next FY’s work will focus on insights for pressure buildup
and developing predictive models

SLBM

Evaluated metamodeling techniques and approaches for
generating experimental designs

Next FY’s work will focus on fitting metamodels to BB and
LHS simulations and comparing their predictions

ROMBM

Implemented POD-TPWL for saline aquifer CO, injection

Next FY’s work will focus on improving accuracy, stability

and robustness of selected POD-TPWL schemes
17



Appendix

These slides will not be discussed during the
presentation, but are mandatory
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Organization Chart
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Task 2
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Gantt Chart
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Task 1: Project Management

1.1 Project Management & Planning

1.2 Update Project Mgmt. Plan

1.3 Progress Reporting

1.4 Project Controls

1.5 Deliverables and Reporting

Task 2: Simplified physics based modeling

2.1 Numerical experiments

2.2 Models for two-phase region behavior

2.3 Models for pressure buildup

Task 3: Statistical learning based modeling

3.1 Design matrix generation

3.2 Computer simulations

3.3 Analysis of computer experiments

Task 4: ROM-based modeling

4.1 Black-oil ROM procedures

4.2 Compositional ROM procedures

Task 5: Validation using UA/SA

5.1 Problem definition

5.2 Probabilistic simulation

5.3 Analysis of results
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