# High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems

Jian Cai<sup>1</sup> Michael F. Modest<sup>2</sup>

<sup>1</sup>Postdoctoral Research Associate

<sup>2</sup>Shaffer and George Professor of Engineering University of California Merced Merced. CA 95343. USA



DE-FG26-10FE0003801

May 2012 — Pittsburgh

### Radiation Challenges in Multi-Phase Reacting Flows



- Radiative heat transfer in high temperature combustion systems
  - Thermal radiation becomes very important at elevated temperatures
  - $\bullet$  Coal and hydrocarbon fuels  $C_nH_m \to H_2O,\,CO_2,\,CO,\,NO_x,\,soot,\,char,\,ash$
  - CO<sub>2</sub>, H<sub>2</sub>O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels)
  - Radiative effects are conveniently ignored or treated with very crude models
    - Neglecting radiation ⇒ temperature overpredicted by several hundred °C
    - optically-thin or gray radiation ⇒ temperature underpredicted by up to 100°C
    - Neglecting turbulence–radiation interactions ⇒ temperature overpredicted by 100°C or more
    - In contrast: simple vs. full chemical kinetics ⇒ same overall heat release and similar temperature profiles



# Radiative Transfer Equation (RTE) Solvers

- DOM/FVM included in CFD codes (ray effects, poor for optically thick media, high orders expensive)
- SHM/P-N: P-1 in CFD codes (cheap and powerful; poor for optically thin media); higher orders (P-N) complex
- Photon Monte Carlo (very powerful; expensive, statistical scatter); ideal for stochastic turbulence models
- P-1 ideal solver for optically thicker pulverized coal/fluidized beds

#### Spectral Models

Introduction

- Full-spectrum k-distributions (very efficient; cumbersome assembly, species overlap issues)
- Line-by-line Monte Carlo module (outstanding accuracy at small additional cost)



# Research Objectives

Introduction

0000

- Spectral radiation properties of particle clouds
  - coal, ash, lime stone, etc.,
  - varying size distributions and particle loading
  - classified, pre-evaluated and stored in appropriate databases
- Spectral radiation models for particle clouds
  - Adapt high-fidelity spectral radiation models for combustion gases
  - Extensions to large absorbing/emitting-scattering particles in fluidized bed and pulverized coal combustors
  - New gas-particle mixing models and consideration of scattering
- RTE solution module
  - P-1 (and perhaps a P-3) solver (for optically thick applications)
  - Photon Monte Carlo solver (for validation and for optically thinner applications)
- Validation of Radiation Models
  - Module connected to MFIX and OpenFOAM
  - Comparison with experimental data available in the literature
  - Simulations for fluidized beds and pulverized-coal flames



Future Work

### Accomplishments

- Radiative spectral properties database
  - Surveyed radiative properties measurements of coal combustion particles
  - Compiled a radiative property database of particles in coal combustion
- Spectral calculation models
  - Ported previously developed gas-soot module to MFIX
  - Generated CO<sub>2</sub> and H<sub>2</sub>O k-distribution correlations
  - Developed particle spectral properties calculation module
  - Developed new regression scheme for splitting radiative heat source
  - Started to port module to OpenFOAM
- Radiative Transfer Equation (RTE) solver
  - Implemented P-1 RTE solver for both gray and nongray participating media
  - Implemented Monte Carlo RTE solver for both gray and nongray media
  - Verification against line-by-line (LBL) solutions for 1D homogeneous slab
- CFD simulation
  - Radiative heat transfer in a fluidized-bed coal combustor (P-1 with CO2-char k-distribution)



### **RTE Solution Module**

#### P-1 Solver:

- Ideal RTE solver for expected large optical thicknesses
- Single-scale full-spectrum k-distribution, assembled from narrow-band data for particulates and gas k-distributions
- One RTE solution, but separate emission and absorption terms for individual phases

#### Photon Monte Carlo Solver

- Ported from our gas combustion work with LBL module
- Particulate emission and absorption added
- To ascertain accuracy of P−1/replace it whenever necessary



Future Work

# Non-gray gas and particle radiative properties

- Gases: CO<sub>2</sub>, H<sub>2</sub>O and CO have strong spectral dependency
- Particles:
  - Nongray even if complex refractive index is gray
  - Much smoother than gases, can be modeled as constant over narrowbands



#### Conditions:

- Temperature 600K
- Gas: 10% CO<sub>2</sub>
- Particle: m = 2.2 - 1.12i, volume fraction 0.001, diameter  $400 \mu \text{m}$



#### Narrow Band k-Distributions

Introduction

- RTE (without scattering):  $\frac{dI_{\eta}}{ds} = \kappa_{\eta} \left( I_{b\eta} I_{\eta} \right)$
- Planck function much better behaved than absorption coefficient,  $\approx$  const over small part of spectrum  $\Delta \eta$
- Can be reordered into a monotonically increasing function
- On right cumulative k-distribution of narrowband spectrum on left
- Requires "correlated" absorption coefficient



### Spectral Models for Combustion Gases, cont'd

### Full-Spectrum k-Distribution

- On right cumulative full-spectrum k-distribution of CO<sub>2</sub> absorption coefficient at 300 K, 1 bar on left
  - Very steep at  $k_{max}$
  - Covers many orders of magnitude
  - Part of spectrum has "zero"  $\kappa_{\eta}$
  - 6-10 RTE evaluations as opposed to >1,000,000 for LBL
  - Requires "correlated" absorption coefficient



### Extension to gas-particle flows

- Reordering by total absorption coefficient
  - Spectral information is lost
  - Difficult to track fraction of gas or particle contribution
  - Multiple solid absorption coefficient values may correspond to the same total absorption coefficient (right figure)
- Correlation assumption requires gas and particle absorption coefficient to be correlated with total absorption coefficient
  - Gas correlation is approximately valid (left figure)
  - Solid correlation is not valid (right figure)





### Regression

- To split heat source across phases, a regression scheme is proposed
- Regression:

$$\hat{k}_m(k;T_m) = \frac{\int_{\eta} \kappa_{m\eta} I_{\text{b}\eta} \delta(k - \kappa_{\eta}^0) d\eta}{\int_{\eta} I_{\text{b}\eta} \delta(k - \kappa_{\eta}^0) d\eta}$$

- Gives "effective" solid phase absorption coefficient at given total absorption coefficient
- Numerical calculation
  - Weighted average of narrowband constant values

$$\hat{k}_{m}(k_{i}) = k_{m,i} = \frac{\sum_{n=1}^{N_{\mathsf{nb}}} I_{\mathsf{bn}} k_{m,n} \Delta g_{n,i}}{\sum_{n=1}^{N_{\mathsf{nb}}} I_{\mathsf{bn}} \Delta g_{n,i}}$$



| Challenge                       | Solution                                                                              |
|---------------------------------|---------------------------------------------------------------------------------------|
| Nongray absorption coefficients | <i>k</i> -distribution, reordering by total absorption coefficient at reference state |
| Gas emission, absorption        | Gas absorption correlation with total absorption coefficient                          |
| Solid emission, absorption      | "Effective" absorption coefficient from regression                                    |
| Total emission, absorption      | Conserved through summation over phases                                               |
| Multiple temperature emission   | Exact (assuming gas is correlated)                                                    |
| Scattering                      | Gray                                                                                  |

Sample calculations



# Sample calculation—inhomogeneous medium

One dimensional slab with two layers

|                  | Left                                                     | Right                    |
|------------------|----------------------------------------------------------|--------------------------|
| Width            | 5cm                                                      | 5cm                      |
| Gas              |                                                          |                          |
| Temperature      | 600K                                                     | 1200K                    |
| Composition      | 5%CO <sub>2</sub> , 95%(N <sub>2</sub> +O <sub>2</sub> ) | $10\%CO_2,90\%(N_2+O_2)$ |
| Paticles         |                                                          |                          |
| Temperature      | 500K                                                     | 1300K                    |
| Diameter         | 200 $\mu$ m                                              | 100 $\mu$ m              |
| Volume fraction  | $10^{-3}$                                                | $2.5 \times 10^{-4}$     |
| Refractive index | 2.2 - 1.12i                                              |                          |

- RTE solver P<sub>1</sub>
- 64 quadrature points



# Sample calculation—inhomogeneous medium, cont'd

- Predicts major trends
- Gas heat source is one order less but vary accurate
- Gas radiation is from strong bands, regression scheme picks solid absorption coefficient at the corresponding wavenumbers
- Cold layer solid heat source inaccuracy due to  $I_{\eta} \neq I_{b\eta}$
- Hot layer solid heat source within 1%





# **Test Configuration**

- Geometry
  - 2D cylindrical axisymmetric
  - Radius 10cm, Height 60cm
  - 20X60 cells
- Flow
  - Central jet
    - Air 300K, 1g/s (2.67m/s)
    - Cold char, 1.8g/s (2.67m/s)
  - Annulus coflow
    - Air 300K, 11.6g/s (0.32m/s)
- Wall
  - Wall temperature 800K, black
- Initial condition
  - Bottom 20cm filled with hot char particle, 1000K





#### Reactions

- $C+\frac{1}{2}O_2 \longrightarrow CO$
- C+  $CO_2 \longrightarrow 2CO$
- $CO+\frac{1}{2}O_2 \longrightarrow CO_2$
- Cold-char → Hot-char (pseudo reaction to model char heating)
- Radiation
  - Nongray CO<sub>2</sub>, CO and char
  - P-1 RTE solver
  - Split radiative heat source across phases



# Temporal behavior

Gas temperature in the free board (r=0.25cm, h=56.5cm)



#### Gas

- Lower temperature due to radiation
- Larger temperature fluctuation due to radiative gas concentration variation

### Solid temperature inside bed (r=0.25cm, h=16.5cm)



#### Solid

- Temperature drops due to radiation
- Larger fluctuation due to convection of cooler particle from freeboard-bed interface



### Instantaneous Flow Fields



Solid temperature (K)



Gas radiative heat source (W/m3)



Solid radiative heat source (W/m<sup>3</sup>)





# Time Averaged Temperature

Time averaged gas temperature (K)



Time averaged solid temperature

- Relatively unaffected
- $\bullet$   $\Delta T$  from +5 to -15K



### Effort for Next Year

- Implement turbulent mixing and combustion model
- Implement higher-level char combustion kinetics
- Set up simulation of radiative heat transfer in a pulverized coal combustor
- Comparisons between P-1 and Monte Carlo RTE solver
- Comparisons between various spectral models



### Instantaneous Flow Fields

#### Void Fraction



### **CO Mass Fraction**



CO<sub>2</sub> Mass Fraction



### Instantaneous Flow Fields



# Time Averaged Flow Fields



### Time Averaged Temperature

Time averaged gas temperature (K) Without radiation  $\Delta T$  with radiation





Time averaged solid temperature

- Relatively unaffected
- $\bullet$   $\Delta T$  from +5 to -15K

### Time averaged flow field

Solid temperature without radiation (K)



Solid temperature difference with radiation (K)





### Time averaged flow field

Gas radiative heat source (W/m<sup>3</sup>) Solid radiative heat source (W/m<sup>3</sup>)



