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My main message today Iis that:
TDL Absorption is Practical in Harsh Environments

Utilizes economical, robust and portable TDL light sources and fiber optics
Can yield multiple properties: species, T, P, V, & m in real-time over wide conditions

= T 1o 8000K, P to 50 atm, V to 15km/sec, multiphase flows, overcoming strong
emission, scattering, vibration, and electrical interference

Demonstrated in harsh environments and large-scale systems:

= Aero-engine inlets, scramjets, pulse detonation engines, IC engines, gas turbines
arcjets, shock tunnels, coal-fired combustors, rocket motors, furnaces....

Potential use in control of practical energy systems

IC Englnes @ Nissan

Coal-fired Utility Boiler Coal Gasifier @ U of Utah

Chao, Proc Comb Inst, 2011 Jeffries, SAE J. Eng, 2010
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i Absorption Fundamentals: Species

Absorption of monochromatic light
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« Scanned-wavelength line-of-sight direct absorption
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* Spectral absorption coefficient k, =S(T)-®(T,P, i) xi -P
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i Absorption Fundamentals: Velocity
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Shifts & shape of ® contain information (T,V,P,y;)
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i Absorption Fundamentals: Temperature
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T from ratio of absorption at two wavelengths
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:-| Absorption Fundamentals: Multiplexed
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 Wavelength multiplexing is often utilized
 To monitor multiple parameters or species
 To assess non-uniformity along line-of-sight
TSTANFORD
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Absorbance

o 700K, 1 atm
10

TDL Sensors Provide Access to a Wide Range of
Combustion Species/Applications

= Small species such as

) 1X=1, L=1cm NO NO, CO, CO,, and H,0O

have discrete rotational

transitions in the
vibrational bands

20 4
10 4

Larger molecules, e.g.,
hydrocarbon fuels,
n-dodecane have blended features

2 3 4 5 6
Wavelength (um)

Two primary TDLAS sensor strategies (STANFORD
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Two Absorption Measurement Techniques:

q Direct Absorption (DA) & Wavelength Modulation Spectroscopy (WMS)
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= Direct absorption: Method of choice when applicable

= WMS: More sensitive especially for small signals (near zero baseline)
= WMS with TDLs improves noise rejection
»« 1f-Normalized WMS-2f/1f: Provides I, without a baseline
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High P,T Sensing Enabled by WMS

Simulated Absorbance Spectra
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_ 2500 K
= High P, T challenges 041129 H,0

L=4
= Broad and blended spectra at high P - o
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WMS-2f/1f Accounts for Non-Absorption Losses

Modulated TDL = Ambient H,O (T=296 K, 60% RH)
] Detector 2 - ’
near 1392nm - = L=29.5 cm, ~6% absorbance)
006_1392 nm, Partially Blocking Beam 1392 nm, Vibrating Pitch Lens
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= Demonstrate normalized WMS-2f/1f in laboratory air

« 2f/1f unchanged when beam attenuated (e.g., scattering losses)

=« 2f/1f unchanged when optical alignment is spoiled by vibration

2f/1f Magnitude  1f Magnitude

2f/1f Magnitude

WMS-2f/1f signals free of window fouling or particulate scattering
WMS has other advantages too TSTANFORD
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= Measurement in syngas product line before particulate filtering

= Varies with gasifier performance, fuel, temperature, etc.

11

Sensing with Large Transmission Losses from

Scattering Enabled by WMS

Transmission of laser light at non-absorption wavelengths
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= Particulate loading increases with pressure (99.9% loss at 150psig)

Solution: Stanford’s 1f-normalized WMS-2f scheme

What might we measure in syngas?

TSTANFORD
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Vision and Goals for TDL Sensing in IGCC

A e e |
I Oxygen or /\ Sensor for I
| Steam &asfier/ T & Syngas \
: )1( > Composition Fuel/air Ratio
| xeactory ., |1 C : Control
I Oxygen/Coal Core I} i
~ "l Ratio Control v
v e > Syngas .
* @uench) V Clyea(f]nup ; < Gas Turbine
Coal \/

Vision: Sensor for control signals to optimize gasifier output and gas turbine input
Goals: = Two flow parameters considered: gas temperature and heating value
= Gas temperature determined by ratio of H,O measurements
= Measurements of CO, CH,, CO,, and H,O provide heating value
= H, determined by gas balance as other species ignored
= Four measurement stations considered: spanning reactor core to products

TSTANFORD
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Oxygen-blown, Down-fired, Entrained-flow
Coal Gasification Facility at the University of Utah

Pilot scale gasifier

» Rated to 450 psig
= current data to 200 psig
» Rated to 3100 °F
= Coal throughput: 1 ton/day
= Overall dimensions
51m (17) tall
0.76 m (30”) OD
» Reactor dimensions
1.5 m (60”) long
0.20m (8") ID

= Four measurement campaigns to test Stanford TDL sensors:
= Aug. 2010, Dec. 2010, Aug. 2011, May 2012
= l|deal facility for instrumentation testing:
= Rapid transition from 1 atm flame to 20 atm gasification conditions

= Reactor kept hot with 1 atm natural gas flame between runs T

STANFORD
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Sensor Setup in Utah Gasifier: T and H,O

Two reactor locations tested
s Position 1;: Reactor core
= Position 2: Quench location
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Sensor Setup in Utah Gasifier: T and H,O

Two reactor locations tested
s Position 1;: Reactor core

Highest T

Largest scattering losses
Emission interference
Time limited by slag flow

Successful measurements
demonstrated

Gasifier reactor

Slag

Focusing s

mirror - _°
Optical'
filter

O

Liquid H,O

e >| quench

Diode Lasers 1x2 fiber
P 1352, 1347 nm combiner
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0 Ol current
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controller Diode Lasers 1x2 fiber
DAQ combiner

1392, 1469 nm
Control Room

Collimator



Temperature in Reactor Core

2400 :
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= Transmission at 50 psig 0.13% dropping to 0.02% at 150 psig
= Normalization scheme successful
= Very strong optical emission - optical filtering scheme successful

= Optical access tube successfully stayed open in presence of flowing slag’
= Later unsuccessful with different coal (and different atomizer)

TSTANFORD
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Temperature in Reactor Core

Increase O,
Reactor Core
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= Normalization scheme successful with low transmission (< 0.02%)
= TDL sensor time response can capture flow changes

’FTANFORD
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Sensor Setup in Utah Gasifier: T and H,O

Gasifier reactor

Two reactor locations tested Slag
= Position 2: Quench location NzP“fgei N, Purge
= Modest purge flow keeps -

Collimator

0

Focusing s

windows clean mirror  _{
= Lower T — different line pair Optical ®
- _ filter
= Amplifier available

= Increase power x10 fv%pdpohire >
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Temperature @ Quench Location

1000 - EgopSig
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Gasifier with coal fuel

| Time resolution = 1.3s
0 y T y T T T v T y T y

0 30 60 90 120 150 180
Time[s]

= Normalized WMS accounts for varying transmission (102 at 160 psig)
= Measured T at reactor pressures of 90, 120 and 160 psig stable
= Measured T at 200 psig identifies potential fuel/O, input instabilities

’FTANFORD
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Temperature @ Quench Location
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= Different gasifier conditions, different coal, more particulate scattering

= High SNR, time-resolved measurements of T using fiber amplifier
= Less than 10 of the laser light transmitted

TSTANFORD
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Syngas
filter
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= CO, CO,, and CH, lasers use lasers 2-2.3 um

21

= Fiber technology less available

Solid/liquid waste

Gasifier

= TDLs controlled remotely but located near measurement

Sensor Setup in Utah Gasifier: Syngas Composition

’FTANFORD
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Sensor Setup in Utah Gasifier: Syngas Composition

= Syngas can by-pass sensor location for window maintenance
= Similar setup before and after particulate filter (similar results)
= Multiple-lasers directed through one window

= Rapid (10 Hz) switching from one species to another

= Time-resolution ~1/3 second
22
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TDL Sensor Measured Syngas Composition
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Laser absorption measurements of CO, CO,, H,O and CH, over 1 hour
CH, added to syngas to test sensor response and vary gas composition
Gasifier feed rates changed to test sensor response

TSTANFDRD
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Syngas Composition Including N, and H,
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= N, in flow from gas purges — determined by metering and GC data
= Assume the rest of the syngas is H,
= Enables determination of lower heating value (LHV)

T STANFORD
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25

Time-Resolved Monitor of Syngas LHV
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Time [min]
One hour time record of syngas lower heating value (LHV)
= CO, CO,, CH, and H,O from TDL sensor and N, from facility data
Assume balance of syngas H,
= LHV contribution of small concentrations of H,S and NH,
are estimated to be less than 2% (accounted as H,) Tg}gmgg
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Summary
1E
ml B
= A novel modulation strategy enables measurements in high pressure
environments with extinction by scattering

= Scheme validated for extinction as large as 10°

= Sensor demonstration measurements made in four locations of a pilot-scale,
entrained-flow, coal gasifier

= Time-resolved measurements capture small changes in gasifier
operating conditions

= Current work focused on sensor validation and demonstration

Next Steps:

= Transition sensor to real-time for continuous unattended monitoring

= Add H,S and NH; to sensor suite

= Package next-generation sensor for industrial-scale applications (test Utah?)
= Find suitable industrial-scale demonstration opportunities
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