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Motivation ) s,

Recently promulgated regulations regarding hazardous-air-pollutant (HAP)
emissions from utility coal boilers include:

= Substantial reductions in allowable emission levels, especially for new plants
= |ncreased monitoring and reporting requirements

Determination of HAP emission limits based on:
= Environmental and health effects
= (Capabilities of monitoring approaches

Potential for greater emissions control with advanced sensors that can
operate with high-sensitivity, specificity, and with a fast time response

HCl identified as a key HAP for which current continuous emission
monitors (CEMs) are inadequate
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HCl CEMs ) .

= QOptical approaches offer high sensitivity and specificity
= Tunable diode laser spectroscopy
= Fourier transform infrared spectroscopy (FTIR)

= Detection sensitivities of currently available HCI CEMs
= Extractive: 0.1 ppm Configuration with Measuring Probe
= Probe:0.2 ppm Sender/receiver it
= Cross duct: 60 ppm

= Existing technology sufficient to
meet monitoring requirements for
existing utility coal boilers, but Cross Duct Configuration
inadequate for new units

with tube

. B g Reflector unit
Sender/receiver unit bl

= Goal: to develop an in situ monitoring
approach with detection sensitivity < 0.1 ppm

" Flhnge with
tube

Purge air
attachement
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Traditional Cavity Ring-Down =
Spectroscopy (CRDS)

Laboratories

= Principles of operation:
= Laser pulse is injected into a high finesse cavity and the decay of light intensity, I(t),
leaked out of the cavity is monitored:

I(t) = 1, eV

= Decay constant, T, of the cavity depends on the mirror reflectivity, scattering, and
absorption by the background gas
= Absorption by analyte present in cavity increases decay rate

= Advantages
= High sensitivity: long path length from multiple passes through the cavity
= Ring down time not sensitive to variations in laser intensity

=  Key disadvantages
= (QObserved intensity decay not spectrally resolved - to acquire a spectrum, the
laser wavelength must be scanned
= Spectral resolution limited by laser linewidth, necessitating high-quality laser
source
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Dual-Etalon, Frequency-Comb T,
Cavity Ring-Down Spectroscopy

= New technique” recently developed at Sandia to generate a broad-bandwidth,
high-resolution spectrum with the sensitivity of CRDS in a single laser pulse

= Broad bandwidth laser beam directed through two etalon cavities of slightly
different lengths

= Qutput beams are two frequency combs with spacings set by free spectral
ranges (FSRs) of etalon cavities

= Difference in spacing between the ,/Y‘A
frequency combs generates beat . \5‘
frequencies when signals from the 6..,(, \
the two cavities are combined \

= Absorption spectrum can be \(
reconstituted from the observed g

interference pattern \%\/

*Patent submitted 2011
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Simulated Etalon Output ) i,

= Etalon 1 free spectral range: 1.5 GHz
=  Etalon 2 offset: 100 MHz

I I 1 I 1 I I I 1 I | 1 I 1 I I I 1 I 1
Gaussian Profile Superimposed on
- Wavelengths Supported by Etalon Cavities -
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Generation of Beat Frequencies @

=  Heterodyning two frequency combs results in additional beat frequencies, shifting spectrum to lower frequencies
=  Key to high resolution: frequency walk-off of the two combs ensures that each optical frequency corresponds to a

unique rf frequency
25 i T T T T T T T T T T T T T T T T T T T i
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Impact of Etalon FSR Offset
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1.0
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Dual-Etalon, Frequency-Comb CRDS e
Characteristics

Laboratories

=  Width of single-shot spectrum determined by laser bandwidth

=  Maximum spectral resolution equals free spectral range of etalons, not
laser linewidth

= Laser requirements (spatial beam quality, linewidth, stability) relaxed in
comparison to traditional CRDS

= Sensitivity of CRDS with a single laser shot

= Additional sensitivity can be achieved with signal averaging

e

<
\;’“’\

%

\@f..:

Laser-Based Detection of Trace-Level Contaminants




Sandia

Outline ) 2.
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Proof-of-Principle Experiments ) g

= Goal: demonstrate feasibility of dual-etalon, frequency-comb cavity ring-
down spectrometer

= Target: weak H,O absorption overtones accessible with readily available
dye lasers

HITRAN-generated H,0 Absorption Spectrum
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Experimental Setup | ) B,

Laser: amplified broadband dye laser w/DCM
= Laser thought to lack longitudinal mode structure common in pulsed dye laser systems
=  Pulse energy: 10 mJ
=  Pulse width: 65 ps
=  Repetition rate: 20 Hz
=  Bandwidth: 15 nm

Bandpass filter to prevent spectral overlap
= 1+0.2nmFWHM
= Center A:632.8 nm
= Peak transmission: 50% A ._u;le; S
= Qut-of-band transmission (200-1100 nm): <0.01% Lo g mmi] o

- b L]

Etalon cavities:
= Length: 10 cm (1.5-GHz FSR)
= Mirror reflectivity: >99.5%
= Confocal configuration: beam collimated in forward direction and focused in cavity center on return

.
.
K
.

A
RV

Fiber coupling for spatial filtering of higher-order cavity modes

Detector: 1.2-GHz photodiode coupled to 4-GHz oscilloscope
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Ring-Down Signals ) ..

Cavity 1
0o T T T T T
' S 0A4FT_T T T 1
> 02| M1.5GHz _
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< FSR: 1.5 GHz
= Fit ring-down decay to:
5 I(t) = 1, e /s
= Cavity decay constant:
t=75ns
0 50 100 150 200 250  300ns
Time
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Interaction of Frequency Combs Apparent e,
in Fourier Transforms of Ring-Down Signals
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Variable, Structured Laser Intensity = i,

Laboratories
Profile
Single Pulse
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Laser Profile

Single Laser Pulses Average of 1000 Pulses

T

Intensity
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= |ndependently measure laser profile with 1-m spectrometer

= Confirmation that laser output has considerable structure and pulse-to-pulse variations

= Filtered laser profile:
= Center A:632.8 nm
= FWHM: 0.98 nm
= 1/e?full width: 2.0 nm
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Data Analysis with Structured Laser 7o,
Profile: 2 Approaches

= Signal averaging
= With a sufficient number of averages, gaps in laser spectral profile are minimized

However, an observed drift in signal due to thermal fluctuations impedes simple

| |
signal averaging:
= Simulated Gaussian profile, 1.5-GHz FSR:

s
(=]

Intensity
o
[6)]

Frequency (GHz)

= %40 kHz in AFSR (£2.7 um change in cavity length) causes shift of 36 MHz in Fourier
transform (2.5 cm shift in wavelength spectrum)

= Measure decay of individual beat frequencies in Fourier transform

= Cavity ring-down signals independent of laser intensity
= However, peaks may be missed if the laser power is too low
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Examine Decay of Individual e
Beat Frequencies
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Combined Ring-Down Signal FFT of Ring-Down Sections
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Intensity (a.u.)

LU AUL L

Absorption Spectra of Air
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Single-Shot
Spectra

HITRAN Simulation
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* Resolution limited by cavity decay constant
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Spectral Resolution )

23fF | I

= Ultimate spectral resolution limit . ,
determined by etalon FSR . /l }

= However, ability to resolve beat 10k s
frequencies is limited by ring-down times 051 (‘ '\ .
0.0

(Fourier transform resolution determined 630.00 630.02 630.04
by time window) Wavelength (nm)

Intensity

= Assuming cavity decay constant sets l
. I ' ' I ' I ' |
resolution, for t = 75 ns: 08 L )
=  Fourier transform resolution: 13 MHz = 06 —
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1
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Experimental Setup i
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Setup Comparison

Setup | Setup Il

Wavelength 633 nm 629 nm
& | Pulse energy 10 mJ 3m)J
i'ue Pulse width 65 ps 6 ns
Linewidth 25 cm? 0.15cm™?
Length 10 cm 50 cm
o FSR 1.5 GHz 300 MHz
S | AFSR 700 kHz 240 kHz
S Mirror reflectivity >99.5% >99.99%
Cavity decay constant, t 75 ns 50 pus
Detector 1.2-GHz photodiode PMT

= Considerably smaller spectral region captured with single pulse
= Higher mirror reflectivity and longer cavity length results in longer decay constant,

increased sensitivity, and higher spectral resolution
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Results and Analysis ) .

Combined Ring-Down Signal FFT of Ring-Down Section
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Excellent agreement between observed spectra taken w/dual-etalon, frequency-
comb spectrometer and that from the lower-resolution conventional CRDS method
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HCI Spectroscopy ) B,

= Strong absorption features spanning 3.2-3.8 um
= Simple, well-resolved spectrum

HITRAN Simulation

100 T T T | T T T | T T T | T T T =
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c
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=
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20 |- l .

0 ! I l LL
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Wavelength (pm)
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Non-Negligible Background Absorption .

=  HITRAN simulation Background Absorption by Flue Gas Species
. ‘ T | | Y p— :
assumptions: —_ ﬁcc)zrlnposne

=  Primary gas components: S 7

6% H,0, 4% O,, 14% CO,, S ]

76% N, 5 .
= HCl concentration: 0.1 ppm <
= Additional species included w 0,

(ex. SO,, NO, NO,)

37 3.8
= Temperature: 200 °C Wavelength (Lm)
= Path length: 100 m Individual Species Contribution to Background Absorption
1o’ ! ! —H,0
=  Primary background 10' — CO,
absorption from H,0, and ° : ol

to a lesser extent CO,

Absorption (%)

g
| I\I\n T 35

Wavelength (um)
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Discernible HCI Features Above g
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Ratio of Composite Spectra With and Without HCI
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@ 1 L1 N | i | II | L1 l. I | u || I d |
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= With high-resolution spectrometer expect to be able to discern HCl above background
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Absorption Path Length e
and Spectral Resolution

Laboratories

= Increased path length - greater absorption

= |ncreased ring-down time/cavity decay constant associated with a longer
path length - higher resolving power in FFT

= Calculate spectral resolution assuming:
= FSR: 150 MHz - maximum spectral resolution: 0.005 cm!
= AFSR: 100 kHz
= Path length-limited spectral resolution = (FFT resolution) x (FSR / AFSR)
\ J

Y
rf frequency - wavelength conversion

Path Ring-down FFT Resolution Spectral Resolution | Spectral Resolution
Length (m) | time (us) (MHz) Limitation
50 0.17 6.0 0.3 path length
500 1.7 0.6 0.03 path length
5000 17 0.06 0.005 etalon FSR

e
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Absorption Path Length = s

National
Laboratories
vs. HCI Signal/Background
= Simulate absorption spectra with R
and without HCI for calculated I :3 .
spectral resolutions 15 |- il

= Increasing path length/increasing i _
spectral resolution: I |

o
= |nitially improves ability to £ 10__ |
distinguish HCl features above 8 I 1
background 2 I i

%)
= At longer path lengths, background i ]
absorption dominates the spectra, I )
5 -

lowering the signal/background ratio

= Feature B optimum path length
= ~500 m (1.7-us ring-down time)
= Signal/background: ~17 8T e 0 Y T 2P YR

Path length (m)

e
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Experimental Setup — e
Laser Source

Laboratories

= Custom-built Nd:YAG-pumped OPO/OPA

= Pump laser: Continuum Surelite
= Pulse energy: 500 mJ
= Pulse width: 9 ns
= Repetition rate: 10 Hz

= OPO/OPA

= Measured pulse energy at 3.6 um: 15 mJ

= Bandwidth: estimate based on phase matching conditions
= Seeded pump: 2 cm?
= Unseeded pump: 19 cm™?

e
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Generation of 3.6 um

KTP OPO KTA OPA

MOF2 Waveplate

1064 nm
532 nm

OPO idler
mid-IR output

Thin fllm Polarizer F M3

M2 Beam Spiter

= OPO:
= Pump A:532 nm
= Crystal: KTP, type Il phase matching
= Qutput: tunable signal light over 710-885 nm

= OPA:
= Pump A:1064 nm
= Seed: idler from OPO
= Crystals: KTA, type Il phase matching, walk-off compensating geometry
= Qutput: tunable mid-IR light over 1.35-5 um via difference-frequency mixing
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Experimental Setup — e
Monolithic Dual-Etalon Assembly

= Primary goals:
= Minimize thermal variations between two cavities, which adds considerable
complexity to the data analysis and increases measurement uncertainty
= |ndependent adjustment of cavity mirrors to enable precise alignment, ensuring

maximum ring-down times

= Additional features:
=  Multiple gas/vacuum access points
= HCl-resistance
= Stable, rugged unit

= Cavity length: 1 m
= FSR: 150 MHz
= Spectral resolution limit: 0.005 cm™

e
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gas/vacuum
access ports

Two etalon cavities thermally coupled
Multiple conflat flanges for gas/vacuum line access
0.5”-diameter cavity mirrors contained within an adjustable insert
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Design — Cut-Away Views ) .

mirror
inserts

= Concentric cavity arrangement:
= Fundamental mode of the cavity focuses tightly at
the cavity center for both path directions
= Aperture incorporated at this focus will reduce
contribution of higher order modes to the

observed signal - reduction in data uncertainty aperture

holder
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Design — Mirror Insert
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Top View End View
* W4

\ mirror

= adjustment
screws

mirror
adjustment

SCrews

mirror
mirror mount

micrometer

=  Mirrors mount housed within an insert

mirror
insert

=  Mirrorinsert can be translated and angled slightly within cavity bore via adjustment

SCrews

=  Micrometer provides additional tip/tilt control of the mirror mount within the insert
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Experimental Setup — e
Additional Key Components

Laboratories

= Cavity mirrors
= Concentric configuration: 0.5-m radius of curvature

= Confocal configuration: 1-m radius of curvature
= Reflectivity: 99.98%

=  Fluoride glass fiber
=  Transmission range: 0.3-4.5 um
= Typical loss: <0.2 dB/m at 3.6 um

= Detector: InSb photodiode ., Detector Responsivity Curve
= Rise time: 3 ns 3504
= Bandwidth: 120 MHz = 300
= Requires liquid N, cooling %m
52_00—
2 150
g

@ 1.004

4 L
0.501

0.00 T T T T T - r r -
200 250 300 350 400 450 500 550 600 650 7.00
WAVELENGTH [UM]
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Outline ) .

= Motivation
= Dual-etalon, frequency-comb cavity ring-down spectrometer

= Proof-of-principle experiments: H,0, O,
= Setup I: broadband laser, low-resolution cavity

= Setup Il: narrowband laser, high-resolution cavity

= Application to HCl detection
= HCI spectroscopy

= Component selection and next-generation dual-etalon spectrometer
design

= Summary and next steps
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Summary
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Dual-etalon, frequency-comb cavity ring-down spectrometer is being
developed at Sandia to generate a broad-bandwidth, high-resolution
spectrum with the sensitivity of CRDS in a single laser pulse

= Width of single-shot spectrum determined by laser bandwidth

=  Maximum spectral resolution set by etalon FSR, not laser linewidth

The feasibility of this spectroscopic detection approach has been
demonstrated with air
= Developed data analysis tools

= Lessons learned from initial proof-of-principle experiments incorporated in design
of next-generation dual-etalon assembly

Components for application to HCI detection at 3.6 um have been
obtained
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Next Steps ) .

= FY12

= Assemble spectrometer for HC| detection

= Evaluate HCI spectral signature

= Quantify HCl detection sensitivity

= Evaluate impact of primary flue gas constituents and potential
spectroscopic interference species

= FY13-14

= Couple dual-etalon, frequency-comb cavity ring-down spectrometer with
flue gas from laboratory scale burner
= Design and assemble a portable system
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Contact Information i) &=,

= Principle Investigator:
= Alexandra Hoops

= email: aahoops@sandia.gov

= NETL Project Manager:

= Steven Seachman

= Email: Steven.Seachman@netl.doe.gov
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